
1

Synthesis of Approximate Parallel Prefix Adders
Apostolos Stefanidis, Ioanna Zoumpoulidou, Dionysios Filippas, Giorgos Dimitrakopoulos, and Georgios

Ch. Sirakoulis

Abstract—Approximate computation has evolved recently as a
viable alternative for maximizing energy efficiency. One aspect
of approximate computing involves the design of hardware
units that return a sufficiently accurate result for the examined
occasion, rather than computing an accurate result. As long
as the hardware units are allowed to compute approximately,
they can be designed with multiple new ways. In this work,
we focus on the synthesis of approximate parallel prefix adders.
Instead of exploring specific architectures, as done by state-of-
the-art approaches, the introduced synthesizer can produce every
solution that meets the designer’s criteria, resulting in adders
with various delay, area and error trade-offs. This automatic
design space exploration allows approaching in several cases
optimal solutions that could have not been designed with any
other known parallel prefix architecture. The synthesized adders,
when compared with state-of-the-art, achieve 27%–36% better
error frequency on average for random inputs and improve image
quality metrics by 8%–42% for image filtering. These results
are achieved with the proposed adders requiring the same or
marginally more hardware area or energy. On the contrary,
in split-accuracy configurations, more than 30% of hardware
area/energy can be saved for the same classification accuracy for
a neural network application.

Index Terms—Approximate adders, Parallel Prefix Adders,
Synthesis, Energy efficiency

I. INTRODUCTION

Approximate computing explores a fundamental energy-
quality tradeoff by allowing hardware components to compute
possibly inaccurate results with the goal of saving as much
energy as possible [1]. The design of approximate hardware
units is not straightforward and opens up a whole new space
of design choices [2]. For instance, a hardware component
can become inaccurate by removing selected transistors from
specific cells [3]. Also, approximation can be achieved by
removing certain gates or flip-flops from a design’s netlist [4].

In this work, we focus on the design of approximate
adders. An adder is the fundamental component in every
datapath and its performance in terms of accuracy-vs-energy
efficiency is expected to be crucial for the overall quality of
the approximate hardware units.

Out of a wide range of adder organizations, parallel prefix
adders have been proven to be both efficient and versatile
and can meet multiple design criteria and constraints. Parallel
prefix structures can model multiple adder forms spanning
from ripple carry adders, carry increment adders, and fast
adders of logarithmic logic depth as well as everything in
between [5]. Therefore, the parallel prefix formulation of

Apostolos Stefanidis, Ioanna Zoumpoulidou, Dionysios Filippas, Giorgos
Dimitrakopoulos and Georgios Ch. Sirakoulis are with the Department
of Electrical and Computer Engineering, Democritus University of Thrace,
Xanthi, Greece, (e-mail: apstefan@ee.duth.gr, ioanzoub1@ee.duth.gr, dfil-
ippa@ee.duth.gr, dimitrak@ee.duth.gr, gsirak@ee.duth.gr)

addition can form the base for the design of multiple forms
of approximate adders. On the other hand, optimizing the
performance and area of parallel prefix adders is not a trivial
task and has been studied extensively in the literature [6], [7],
[8], [9].

Approximate parallel prefix adders have been designed by
shortening the carry chain [10], [11] or pruning lower levels
of the adder [12]. In a similar vein, in [13] logic gates
are removed from the cells of the parallel prefix adder for
the lower order bits, following a split-accuracy configura-
tion [14], [15]. Similar techniques have been extended to
FPGA chips [16] including also error-correction circuits. The
work of [17] expands approximate parallel prefix adder design
to support configurable accuracy. Although such state-of-the-
art approaches identify efficient approximate parallel prefix
designs, they follow a specific architecture in each case, thus
exploring only part of the design space.

Our goal is to automatically synthesize all possible approx-
imate parallel prefix adders given a maximum allowed carry
chain length, the available number of prefix levels as well as
the maximum allowed internal fanout. The maximum carry
chain length can be less than the bitwidth of the adder and
determines the accuracy of the adder’s result. The carry chain
length, the maximum allowed number of prefix levels and
fanout constraints determine the area/power of the design and
its delay characteristics.

To enable this constrained synthesis approach, we automati-
cally enumerate all possible parallel-prefix trees, both accurate
and approximate, following an approach similar to the one
presented by Roy et al. in [7] only for accurate parallel prefix
adders. Approximate parallel prefix trees include arbitrary
smaller carry chain lengths and possible number of prefix
levels. The extra freedom in carry-chain lengths, increases
significantly the number of parallel prefix adders that can be
designed. To tackle this state explosion, we utilize solution
pruning that allowed us to explore the design space in a
reasonable runtime even for large bit widths.

This enumeration of approximate parallel prefix adders
enabled the identification of new architectures that are pre-
sented for the first time in open literature and offer significant
accuracy and area/power benefits when compared to state-
of-the-art approximate parallel prefix adders [10], [11]. The
proposed approach can also synthesize approximate parallel
prefix adders of split accuracy that compare favorably to
efficient split-accuracy parallel prefix architectures [13].

In overall, the contributions of this work can be summarized
as follows:

• It allows for the first time –to the best of our knowledge–
the enumeration of approximate parallel prefix adder
topologies given a set of design constraints. Appropriate



2

pruning based on design constraints enables the enumer-
ation to complete in reasonable runtime.

• It generates many candidate prefix graph structures for
a given set of constraints that can be evaluated for their
performance in physical implementation and numerical
accuracy. Also, the introduced synthesis engine is avail-
able in [18] under a permissive open-source license,
which makes it fully analyzable and freely extensible and
reusable.

• The proposed approach can synthesize multiple forms
of approximate adders that compare favorably to state-
of-the-art including also split-accuracy alternatives. The
proposed adders have been thoroughly evaluated both
for their hardware complexity and their accuracy using
synthetic inputs as well as real applications. For instance,
when compared with state-of-the-art approximate parallel
prefix adders in image filtering applications, they improve
well-known image quality metrics by 8%–42% for the
same or marginally more hardware area/energy. Also, in
split-accuracy configurations, more than 30% area/energy
can be saved for the same classification accuracy of a
neural network.

The rest of the paper is organized as follows: Section II
revisits the basics of parallel prefix addition and introduces the
possible approximations supported by parallel prefix adders.
Section III introduces the proposed adder synthesis approach.
Experimental results are given in Section IV, and related
work discussing the design of non-parallel-prefix approximate
adders is given in Section V. Finally, conclusions are drawn
in the last Section.

II. ACCURATE AND APPROXIMATE PARALLEL PREFIX
ADDITION

When adding two n-bit binary numbers A =
An−1An−2 . . . A0 and B = Bn−1Bn−2 . . . B0, the sum
bit Si at the i-th bit position is computed by combining
the modulo-2 sum (exclusive OR) of bits Ai and Bi, i.e.,
Hi = Ai ⊕ Bi (XOR), and the carry Ci−1 computed in the
previous bit position:

Si = Hi ⊕ Ci−1. (1)

For computing the sum bits of the following bit positions, the
incoming carry Ci−1 needs to propagate to the next position.
The carry out of the i-th bit position Ci is computed using the
local carry generate and propagate bits Gi = Ai Bi (AND)
and Pi = Ai + Bi (OR) and the fundamental recursive carry
propagation formula

Ci = Gi + Pi Ci−1. (2)

For short bit widths, ripple-carry adder structures [19] offer
compact implementations. For increased bit widths, carry-
lookahead adders improve the linear growth of carry chain
delay [20]. In this case, carries are computed in parallel and
addition is implemented in logarithmic logic depth.

(a) Kogge-Stone (b) Ladner-Fischer

Fig. 1. The (a) Kogge-Stone [21] and (b) Ladner-Fischer [22] parallel prefix
carry-propagate adders.

Fig. 2. The blocks used in the (a) first and (b) in the last stage of a parallel-
prefix adder. (c) The logic-level implementation of the prefix operator ◦. (d)
The simplified operator ◦ used in the last node of each column.

A. Accurate Parallel Prefix Adders

Mapping carry-lookahead adders to parallel-prefix structures
maximize their efficiency and increase their placement and
wiring regularity [5], [6], [7]. Carry computation is trans-
formed to a prefix problem [23] by using the associative
operator ◦ which associates pairs of generate and propagate
bits as follows:

(G,P ) ◦ (G′, P ′) = (G+ P G′, P P ′).

In a series of consecutive associations of generate and propa-
gate pairs, (Gk:j , Pk:j) denotes the group generate and prop-
agate term produced out of bits k, k − 1, . . . , j,

(Gk:j , Pk:j) = (Gk, Pk) ◦ (Gk−1, Pk−1) ◦ . . . ◦ (Gj , Pj), (3)

and carry Ci corresponds to Gi:0. This condition for carry Ci

makes the adder accurate.
Fig. 1 depicts two parallel-prefix carry-propagate adders

and Fig. 2 highlights the logic-level implementation of their
basic blocks. Each adder is organized in three stages. The
pre-processing stage computes bits Gi, Pi and Hi. Parallel
prefix carry computation is done in the second stage using
log2 n prefix levels. The last node of each bit column requires
a simpler implementation of the ◦ operator since only a group
generate term Gi:0 needs to be computed. The last stage
computes the sum bits according to (1).

Parallel prefix adders can take many forms depending on
the number of prefix levels used and the internal fanout
allowed. This affects directly the number of operators needed



3

(a)

(b)

Fig. 3. Two examples of approximate 16-bit parallel prefix adders. Solution
(a) requires less operators than solution (b) but offers a smaller minimum
carry chain length. In solution (a) the carry of bit position 9 checks only 5
less significant bit positions, making the carry chain 6 bits long, while in
solution (b) the carry chains of all inaccurate bit positions is at least 8 bits
long.

to complete accurate carry computation. By allowing more
prefix levels than the minimum possible, offers more freedom
that can be translated to reduced number of operators [5], [6],
[7]. For large input wordlengths sparse parallel prefix adders
are preferred, since the wiring and area of the design are
significantly reduced without sacrificing delay [24]. Parallel
prefix formulation of addition has been expanded to other
forms of carries, such as Ling carries [25], and even to sum-
propagate adders [26].

B. Approximate Parallel Prefix Adders

In this work, without loss of generality, approximate carry
computation means that the parallel prefix trees are not obliged
to associate every carry Ci with the full group generate term
Gi:0 but it may use a group generate term of smaller length,
i.e., Gi:m, with m > 0.

Fig. 3 depicts two representative examples of approxi-
mate 16-bit parallel prefix adders, designed according to
the methodology presented in [10]. In both cases, the nine
low-order carry bits are computed accurately while the rest
are computed approximately using the minimum number of
prefix levels that corresponds to a 16-bit adder. The accuracy
achieved is not the same for all bit positions. For instance, in
the case shown in Fig. 3(a) the carry chain of bit position 9
is only 6 bits long while the carry chain length of bit position
15 is 8 bits.

On the contrary, the adder that is shown in Fig. 3(b) achieves
a minimum chain length of 8 bits in inaccurate bit positions 9,
13. To achieve this goal the second adder utilizes three more
prefix operators, i.e. 28 operators are used by the adder of
Fig. 3(b) and 25 operators are used by the adder in Fig. 3(a).
The more accurate carry computation achieved by the adder of

Fig. 4. An example adder synthesized by the proposed approach that combines
the benefits of both worlds. It achieves the minimum carry-chain length of the
adder in Fig. 3(b) and requires a similar number of operators and maximum
fanout as the more area efficient adder depicted in Fig. 3(a).

Fig. 5. An example of a split-accuracy adder synthesized by the proposed
approach. The prefix tree of each part is designed separately and the two parts
are attached together to form the approximate parallel prefix adder.

Fig. 3(b) is expected to translate to better numerical accuracy
of the addition operations with the cost of marginally increased
area and power. Which approach should be selected is totally
application dependent.

However, other parallel prefix structures, like the one shown
in Fig. 4 that was synthesized using the proposed approach can
achieve the benefits of both adders shown in Fig. 3 under the
same prefix levels. It achieves a minimum carry-chain length
of 8 to all bit positions as done by the adder of Fig. 3(b),
having the same or larger carry chain for every bit position, but
needs only 26 operators and a maximum fanout of 3, similarly
to the adder of Fig. 3(a).

The approximate parallel prefix topologies may refer to the
whole adder width or they can be designed separately for the
low and the high-order bits following a split-accuracy config-
uration [13], [15]. For instance, Fig. 5 depicts a split-accuracy
parallel prefix adder designed by the proposed method, where
the carry chains of the two parts do not interfere or share any
operators, i.e., all carry chains of the most significant part stop
at bit position 7.

III. ENUMERATION OF APPROXIMATE PARALLEL PREFIX
ADDERS

The proposed approach for synthesizing approximate paral-
lel prefix adders extends the enumerating approach of [7] to
include also approximate solutions that satisfy the given design
constraints. Building an approximate parallel-prefix adder of
n + 1 bits involves adding recursively prefix operators to an
adder of n bits only to the most significant column of the
(n+1)-bit adder. The n less significant bit positions are kept
unmodified. This process is applied by using every possible



4

Fig. 6. Illustrative example of recursively generating 5 bit adders starting from a 4 bit adder. Every solution with an accuracy of k = 3 or higher is saved.

valid n-bit adder as the starting point for generating (n+1)-bit
adders.

A. Designer constraints

The size of the solution space increases rapidly since an n
bit adder can lead to multiple (n+1)-bit approximate adders.
Therefore, some possible solutions are skipped.

A solution is considered invalid when it violates the max-
imum allowed number of prefix levels (depth) and maximum
fanout set by the designer.

The designer must also specify the approximation target
for the adders. This is quantified by a single number k, and
means that each carry chain in the adder should be at least k
bits long for bit positions larger than k, and fully accurate for
every bit position smaller than k. This constraint affects which
adders are considered complete and will be passed on to the
construction of the next bit width adders. Any adder at least
as accurate as the requested accuracy constraint is acceptable,
even if it is of higher accuracy than requested.

In split-accuracy configuration the designer sets a minimum
carry chain length k separately for each part.

B. Recursive Enumeration of Prefix Trees

The recursive procedure used for generating approximate
parallel prefix adders will be described via the example shown
in Fig. 6. In this example we arbitrarily start from the 4-bit
adder depicted as 1 in Fig. 6. The full application of the
proposed approach would start from every possible valid 4-bit
adder as a root solution. Our goal is to generate all valid 5-
bit adders stemming from this initial solution that satisfy our
design constraints. Let’s assume that the design constraints are:

5-bit adders with a maximum fan-out of 2, maximum depth
of 3 and minimum accuracy of k = 3. This means that the
last operator on column 4 will need to look back at least until
bit position 2.

The following steps are executed for each solution:
1) Find the LSB of the latest node inserted in column

n + 1. The LSB is the least significant bit included in
the computation in column n + 1. If no operators have
been added yet, the LSB is equal to n+ 1.

2) Create the next set of solutions by inserting the new
operator in column n+ 1 and connecting it to the node
directly above it and to every possible node in column
LSB − 1.

3) Proceed to the next set of solutions and repeat the
process. A solution does not generate new solutions
either if it’s fully accurate or if it already violates some
design constraint.

We execute the above steps for the example of Fig. 6, start-
ing with solution 1 . Since a 5-bit adder is being constructed,
operators will be added only on column 4. Since no operator
has been inserted yet, LSB = 4 (step 1). For step 2, we need
to identify all the valid positions in column LSB− 1 = 3 for
the new operator to be connected.

The first valid connection is the input of column 3. This
connection produces solution 2 . The other two solutions
connect the new operator to the already existing operators
of column 3. The first one is placed in the first prefix level
producing the group generate and propagate term 3:2, and the
second one in the second prefix level computing the group
term 3:0. Connecting the new operator to be added to these
positions will generate solutions 3 and 4 , respectively.
Solution 3 has a minimum accuracy of 3 so it’s accepted



5

as a final solution. Solution 4 is fully accurate, so it is also
accepted as a final solution. On the other hand solution 2

is a valid solution but doesn’t meet the minimum required
accuracy, so it is not added to the list of final solutions.

The process is repeated recursively for each new solution.
For instance, for solution 2 the LSB is equal to 3 since the
last operator on column 4 computes the bits 4:3. Therefore
the new operator added should be connected to column 2. The
choices are to either connect it to input bit 2, or to the operator
that generates the group term 2:0. This expansion of the prefix
tree leads to solutions 5 and 6 , respectively. Solution 5

has an accuracy of 3 and solution 6 is fully accurate, so they
are both accepted as final solutions.

Even though solution 5 is accurate enough to be accepted
as a final solution, it is not fully accurate. Therefore any
solution stemming from it should still be examined, since
they can lead to a better QoR solution later on. In this case,
LSB = 2, and thus the new operator will be connected either
to input bit 1 or to operator that generates group term 1:0 in
column 1.

It has been observed that connecting new operators to input
bits will potentially grant a worse QoR compared to connect-
ing them to another operator, since the adder topology is used
less efficiently. The first new operator added on each column
(e.g. the operator added to generate solution 2) is excluded
from this, since connecting it to an input bit is the only way
to insert it on the first logic level, therefore no inefficiency
is observed. On the other hand, connecting to an input bit
instead of other operators can help generate solutions with
smaller maximum fan-out, in cases where this constraint is
tight. Our experiments have shown that connecting an operator
to an input bit for two consecutive steps will only grant
suboptimal solutions, consuming runtime without generating
a high quality adder with small fan-out. Therefore no two
consecutive operators should be connected to an input bit.
After generating solution 7 by connecting the new operator
to input bit 1, it is observed that the previous operator is also
connected to an input bit (bit 2). Therefore solution 7 will
be rejected for using the topology inefficiently. Solution 8 is
also rejected since it violates the maximum fanout constraint
on operator 1:0.

By continuing the recursive process, five final solutions are
generated: solutions 3 , 5 and 9 are approximate, whereas
solutions 4 and 6 are fully accurate. Each one of these
solutions will be passed on to the algorithm as a root solution
(just like solution 1 is for this example) to generate one-bit
larger 6-bit adders.

C. Solution pruning criteria

To avoid excessive runtime, two more pruning techniques
are applied. First, we only keep a fixed number of solutions
that have the same operator number, maximum level and
maximum fanout. This pruning is applied when it is time to
accept a solution as final. If there are more than 500 solutions
with exactly the same characteristics, the new solution is
rejected. This pruning of a valid solution is not expected to
ruin the design-space exploration efficiency of the proposed

Fig. 7. Three 7-bit adders synthesized by our method. Adders A and B have
similar characteristics and only a certain number of such adders will be kept,
whereas adder C is much larger than A and B and can be possibly rejected
for tight pruning criteria.

approach since solutions that have the same characteristics
most probably already explore a similar part of the design
space. For instance, the 7-bit adders A and B of Fig. 7,
have exactly the same characteristics in terms of prefix levels,
number of operators and maximum fanout. Keeping both
of these adders would most probably lead to synthesizing
almost-similar adders and also paying an unnecessary runtime
overhead. Therefore only a specific number of such adders
will be passed on to the next level of the algorithm, e.g., for
generating the 8-bit adders using these 7-bit adders as root.

Second, a new valid solution that is much larger than the
smallest valid solution already identified for the same bitwidth
is automatically rejected. Specifically, if the smallest n-bit
solution has s operators, every n-bit solution with more than
s + ∆ operators will be rejected. For example in Fig. 7,
solutions A and B have 9 operators, whereas solution C

has 13 operators. For a value of ∆ smaller than 4, solution
C would have been rejected. High values of ∆ can produce

a larger set of solutions, e.g., solutions with tight depth and
maximum fanout constraints, whereas smaller values of ∆ will
greatly improve the runtime if the designer selected relaxed
design constraints for the approximate adder under design.

We noticed experimentally that ∆ should be linearly de-
pendent to the adder’s bit width. Therefore, we empirically
set ∆ = 0.7n where n is the adder’s bit width. For instance,
for n = 16 bits ∆ = 11, and for n = 32 bits ∆ = 22.
This pruning is applied as new solutions get generated: if any
new solution (final or intermediate) has more operators than
the minimum adder size + ∆ for this specific bit width, it is
rejected.

D. Supporting Split Accuracy

Another broad category of adders that can be synthesized by
our method are adders of split accuracy. In this case, the adder
is split in two parts that do not share any operator. Also, each
part is characterized by its own minimum carry chain length
requirement, while both parts share the same constraints with
respect to the maximum number of prefix levels and fanout.
To support the synthesis of split-accuracy adders, the proposed
method does not require any significant modification to its
main recursive algorithm.

To be more specific, let’s assume that we need to design
an n-bit adder that consists of an m-bit low-accuracy part and
(n−m)-bits high-accuracy part. Each part is characterized by
its own minimum carry length requirement. At some recursive
step, the algorithm would have generated all valid m-bit
adders. Taking such adders as root solutions and extending



6

TABLE I
ENUMERATION RESULTS FOR 16 BIT APPROXIMATE AND FULLY

ACCURATE ADDERS.

Carry
Chain depth req

max f.o.
Smallest solution # solutions Runtime

(mins)# nodes max f.o.

16 4
8 31 8 11807 0.20
6 32 6 8418 0.18
4 34 4 2238 0.10
2 42 2 13 0.01

11 4
8 29 5 51110 0.35
6 29 5 36937 0.27
4 30 4 20382 0.16
2 39 2 1516 0.02

8 4
8 26 3 144773 0.67
6 26 3 127487 0.53
4 26 3 82801 0.33
2 28 2 8922 0.06

8 3
8 41 2 1 0.01
6 41 2 1 0.01
4 41 2 1 0.01
2 41 2 1 0.01

them by one bit, means that we cross the border between the
low-accuracy and the high-accuracy part. When this happens,
the process effectively restarts and the new operators added
in the high-accuracy part are not allowed to connect to any
operator of the lower part. In this way, the solutions derived
so far for the lower-accuracy part remain unchanged. Also,
for the rest of the enumeration procedure, the minimum carry
chain constraint of the high-accuracy part is only taken into
account.

IV. EVALUATION

The evaluation of the proposed approach is presented in
four steps. In the first step, the relation between the designer’s
constraints and the number of derived solutions as well as
the structure of the best choices is investigated. In the second
step, we compare the proposed approach to state-of-the-art in
terms of numerical accuracy on random inputs and hardware
complexity. Next, we evaluate the accuracy of the proposed
adders on an image filtering application and a neural-network
classifier. In the last step, split-accuracy adders synthesized by
the proposed method are compared to relevant state-of-the-art
for hardware complexity and accuracy for the same benchmark
applications.

A. Design Space Exploration Efficiency

In this section, we highlight the effectiveness of the enu-
meration algorithm with respect to various examined design
constraints. Tables I and II depict the number of operators
and the maximum achieved fanout of the smallest solution
derived (in terms of number of operators) for 16 and 32-bit
adders and for various design constraints. Also, we report the
execution time of each run and the total number of solutions
that are derived in each case. The design constraints include
various combinations of minimum allowed carry-chain length,
and the maximum allowed number of prefix levels (depth) and
internal fanout (‘req max f.o.’). The selected design constraints
are reported in the first three columns of Tables I and II.

In both Tables I and II, the first group of rows refers to
fully-accurate parallel prefix adders. Although there are many

TABLE II
ENUMERATION RESULTS FOR 32 BIT APPROXIMATE AND FULLY

ACCURATE ADDERS.

Carry
Chain depth req

max f.o.
Smallest solution # solutions Runtime

(mins)# nodes max f.o.

32 5
16 75 16 41789 48.77
12 79 12 22859 36.72
10 82 10 20825 28.50
8 88 8 11645 22.28
6 91 6 2977 13.90
4 107 4 201 9.40

22 5
16 72 12 279291 57.62
12 72 12 209618 45.41
10 73 10 196464 37.48
8 75 8 150398 29.22
6 78 5 113160 20.18
4 85 4 57830 13.33

16 5
16 64 7 1321248 118.27
12 64 7 1128069 77.16
10 64 7 454208 60.49
8 64 6 436093 44.72
6 66 6 303434 32.62
4 68 4 176845 21.81

16 4
16 113 3 1 0.33
12 113 3 1 0.33
10 113 3 1 0.33
8 113 3 1 0.33
6 113 3 1 0.29
4 113 3 1 0.17

choices of possible solutions as shown in column ‘# solutions’,
the smallest ones match the number of operators of state-of-
the-art parallel prefix adders available in open literature for
various maximum fanout choices [6], [7]. This shows that our
algorithm performs correctly at least for the fully accurate
adder case, where optimal prefix structures are already known.

The rest rows refer to various forms of approximate adders.
For instance, Fig. 8 depicts the smallest solution derived for the
constraints of rows 3, 7 and 11 respectively, each one including
34, 30 and 26 prefix operators as highlighted in Table I.

In overall, as the maximum fanout constraint increases, i.e.
gets more relaxed, it is observed that the adder size decreases
or stays the same. This is expected since a relaxed fanout
constraint drives our algorithm to more efficient solutions. By
tightening the maximum fanout constraint, the number of final
valid solutions is also reduced. It can also be observed that
the smallest adder doesn’t always utilize all of the allowed
maximum fanout for the case of approximate adders. As the
carry chain becomes smaller, the number of operators involved
in each chain also decreases. This property reduces naturally
the fanout requirements.

The maximum allowed depth has a direct effect on the size
of the final solution. It can be observed that as the maximum
depth constraint becomes more tight, i.e. approaching the
minimum number of log2 n levels for a n-bit adder, the size
of the smallest solution increases considerably.

The properties of synthesized 32-bit adders, shown in
Table II, follow a similar trend. For example, comparing
the fully accurate solutions with the approximate ones, we
observe that the number of operators is significantly reduced
as the accuracy reduces for the same maximum fan-out and
number of prefix levels. The total number of solutions found
also increases as the accuracy constraint decreases, since



7

(a) Accurate (b) Min. Carry Chain 11 bits (c) Min. Carry Chain 8 bits

Fig. 8. Accurate and approximate 16-bit parallel prefix adders synthesized by the proposed approach using a maximum of 4 prefix levels and equivalent
maximum fanout constraints.

more adders that fit the carry chain length criterion can be
constructed.

The measured runtime is not prohibitive, even if enumera-
tion covers thousands of solutions in many cases: It is always
less than 1 minute for 16-bit adders and less than 2 hours for
32-bit adders. These runtimes were taken on a generic laptop
with a 2.2 GHz Intel Core i7 CPU and 8 GB of RAM for
a single-threaded C++ implementation. Since each solution
starts recursively from a different root solution, it is is straight
forward to implement this method in a multithreaded fashion.
In this case, the runtime is expected to reduce significantly.
In overall, it can be observed that experiments with a higher
number of valid solutions, which are the cases with more
relaxed constraints, also have a higher runtime. Moreover,
since we retain a fixed number of solutions per operator
number, level and maximum fanout, relaxing any of those
constraints further increases the runtime. In most cases, the
runtime usually reduces in half as we tighten the required
maximum fanout.

Fig. 9. The average number of operators synthesized by the proposed
approach for 16-bit adders assuming various carry chain lengths and maximum
fanout (‘max f.o.’) constraints. In all cases, the number of prefix levels is set
to four.

Besides the properties of the smallest solution derived for
each set of constraints, it is interesting to explore the properties
of all approximate adders synthesized by the proposed method.
In this direction, Fig. 9 depicts how the average number
of operators of the derived 16-bit adders change according
to the minimum carry chain length requested, for various
maximum fanout requirements. In all cases, the maximum
allowed number of prefix levels is set to four.

When minimum carry chain length is close to the adder’s
bitwidth only a very small amount (if any) of operations can be
saved. In Fig. 9, the number of operators reduces when drop-
ping the requirement of minimum carry chain length below 12
bits. The second observation is that for carry chain lengths of 8

bits (half the total bit width of the adder) or less, the maximum
fanout constraint is not critical any more, since all results
converge to the same number of operators. This is expected
since, as the minimum carry chain required is lowered, less
operators will belong on the same chain, and there are less
opportunities for an operator to reach its maximum fanout
constraint. In overall, as the accuracy constraint is relaxed,
the maximum fanout constraint becomes increasingly less
important and eventually for extremely relaxed cases doesn’t
impact the result at all.

B. Accuracy comparisons with state-of-the-art approximate
parallel prefix adders

In this section, we compare state-of-the-art approximate
parallel-prefix adders [10] with equivalent parallel-prefix
adders derived by the proposed synthesis algorithm for the case
of 16-bit adders. The adders of [10] represent a generic family
of efficient approximate parallel adders and can be considered
a superset of other published solutions [11], [12], [17]. The
adders of [10] include also an error correction mechanism.
This is out of the scope of this work, and it is orthogonal to
the proposed approach. So in order to ensure a fair comparison
we excluded it from the adders we recreated.

Both the proposed adders and the ones presented in [10] are
shown in Fig. 10. The approach of [10] creates hybrid accuracy
adders by defining a maximum and a minimum carry chain.
For this reason, for each adder of [10] that we compare against,
we present two of our own solutions. The first one, named
Proposed I, has a minimum accuracy equal to the maximum
carry chain length of the adders under comparison. For an
apple-to-apple comparison Proposed I adders have the same
maximum fanout as the maximum fanout of the adders of [10].
On the contrary, the second solution, named Proposed II, is
derived by setting the minimum carry chain length between
the minimum and maximum carry chain of the adders we
are comparing against and allow for higher fanout to improve
operator sharing.

To quantify the accuracy of the approximate parallel pre-
fix adders we drive each adder with 50,000 random inputs
and check the addition result against the fully accurate one.
Random inputs are derived from two probability distribution
functions. The first is a purely uniform distribution (i.e., u = 1
with u being the probability of a sample belonging to the uni-
form distribution), where the samples are uniformly distributed
between [−2n−1, 2n−1−1] with n being the adder’s bit width.
The second one follows a mixed structure of a half uniform



8

State-of-the-Art [10] Proposed I Proposed II
A1

A2

A3

Fig. 10. The example adders used for the comparison to state-of-the-art. For each adder proposed in [10] on the left, we use two adders synthesized by the
proposed approach. The two used solutions can help us understand better the design space that can be covered by the proposed enumerative approach.

TABLE III
COMPARISON OF THE PROPOSED 16-BIT ADDERS AGAINST STATE-OF-THE-ART APPROXIMATE PARALLEL PREFIX ADDERS [10].

Adder
Carry Chain

Length max
fanout nodes Uniform Mixed

min max EF MRE EF MRE
A1 4 7 3 29 0.088 2.89 0.176 28.64

Prop. I 7 8 3 33 0.012 0.95 0.075 33.87
Prop II 5 6 3 27 0.058 0.96 0.159 18.85

A2 8 9 3 28 0.006 1.93 0.071 71.27
Prop. I 9 14 2 36 0.001 1.86 0.018 68.94
Prop. II 8 10 3 26 0.004 1.16 0.037 39.89

A3 6 9 3 25 0.015 0.96 0.074 27.66
Prop. I 9 11 3 29 0.002 0.81 0.018 35.98
Prop. II 7 10 3 25 0.007 0.70 0.038 22.82

Avg. Savings Prop. I - - - -19% 86% 37% 65% 8%
Avg. Saving Prop. II - - - 4% 36% 51% 27% 36%

and half Gaussian distribution. Mixed distribution means that
the chance of a sample belonging to the uniform distribution
is 50%, i.e. u = 0.5. For the Gaussian distribution we assume
µ = 0 and σ = 256.

We use two metrics for evaluating the results. The first
metric, named Error Frequency (EF ), quantifies how often an
adder returns an inaccurate result irrespective on the amount
of error:

EF =
total erroneous samples

total samples

An erroneous sample is a set of inputs for which the adder
returns the wrong sum.

The second metric, named Mean Relative Error (MRE),
represents how far the erroneous sum is from the correct result

for all samples:

MRE =

∑
i REi

total samples
.

Relative error REi refers to the error of the ith sample:

REi =

∣∣∣∣ sum − expected sum
expected sum

∣∣∣∣
with the expected sum being the correct result and sum being
the actual result returned by the adder for the ith input sample.

The obtained results are highlighted in Table III. For the
Proposed I adders, we notice that the operator number is
always higher. This is expected, since we are requesting for
more accurate adders by construction for all bit positions than
the adders [10]. On average, the Proposed I adders have 19%
more operators while achieve 86% lower error frequency on



9

(a) (b)

(c) (d)

(e) (f)

Fig. 11. The Area-Delay and Energy-Delay curves for the adders under
comparison for various delay targets when synthesized at 40nm/0.8V.

random uniform inputs and 65% on random inputs derived
from the mixed distribution.

The Proposed II adders achieve a better error frequency
than the adders [10] and also marginally decrease the number
of operators. For instance, the Proposed II adders achieve
36% lower error frequency on average on random uniform
inputs, and 27% on inputs derived from a mixed distribution
function. This improvement comes at no cost since the op-
erator number decreases by 4% on average, as shown in the
last row of Table III. Proposed II adders represent a more
balanced solution in overall, where both hardware resources
are saved, and approximate addition is performed with more
accuracy than [10]. This conclusion is also supported by the
performance of the proposed adders with respect to MRE.

In overall, the proposed adders given an erroneous result
less often relative to [10], as shown by their performance with
respect to EF, and the magnitude of the error is also smaller
as shown by the MRE.

C. Hardware Complexity Comparisons

The adders under comparison shown in Fig. 10 and used in
Table III have been synthesized from Verilog RTL using Ca-
dence’s digital implementation flow and a commercial-grade
40 nm standard-cell library under a mixed VT configuration at
0.8V. All adders were synthesized for a variety of delay targets,
starting from their minimum delay point up to a maximum
delay target of 600ps. The area and energy of adders A1,
A2 and A3 together with their equivalent Proposed I and II
solutions shown in Fig. 10 are depicted in Fig. 11. Figs. 11(a),
(c), (e) on the left column show how the area of each adder
scales in respect to the delay target. Similarly, Figs. 11(b), (d),

and (f) show the corresponding scaling of their energy. The
energy values were derived from the same inputs for which we
calculated the error frequency and mean relative error metrics.

The minimum achievable delay between the adders com-
pared in each case is very similar. This is expected since the
Proposed I and II adders were designed to have the same
number of prefix levels as the adders presented in [10] and
also have a similar fanout distribution on the critical paths.

After a closer examination, we see that Proposed I adders
always have a slightly higher area or energy for the same delay
target, which eventually converges to the same area/energy as
Proposed II and the state-of-the-art adders for more relaxed
delay targets. This is easily explained by the fact that Proposed
I adders have higher operator count, in exchange for more
accurate behavior. The Proposed II adders have a very similar
area-energy behavior as the adders from [10], occasionally
becoming marginally better or worse, but still achieve a
significantly better error behavior as seen in Table III.

D. Application-level Performance Comparisons
The examined approximate adders are also tested on (a)

an image filtering application that employs a mean filter on
grayscale images and (b) a neural-network classifier trained
for the MNIST dataset.

1) Mean Filter: Mean filtering is applied for smoothing
8-bit grayscale images by calculating the mean value of
the pixels in a window around each pixel. In this example,
we used a 5 × 5 window, and thus the mean value of 25
neighbors are computed using the 16-bit approximate adders
under comparison. An example of the application of mean
filtering to a selected image is shown in Fig. 12. This example
includes the result of mean filtering using a fully-accurate
adder, as well as the result of mean filtering when employing
three variants of the examined approximate adders.

To quantify the overall impact of approximate addition to
the performance of mean filtering relative to the result taken
from a fully-accurate 16-bit adder, we used two well-known
metrics: the Peak Signal-to-Noise Ratio (PSNR) and the Mean
Structural Similarity (MSSIM) [27]. PSNR quantifies the
amount of noise present in an image. PSNR is a logarithmic
quantity in the decibel (dB) scale that has low values for noisy
images, while its value increases with the reduction of noise.
The MSSIM is a metric that quantifies the similarity between
two images and its values range from -1 to 1.

Table IV reports the PSNR and MSSIM achieved by the
examined approximate adders for each test image, together
with their average values for all examined cases. The input
images are publicly available and taken from [28]. In all cases,
Proposed I adders outperform the adders of each category,
since they improve PSNR and MSSIM by 42% and 30% on
average. The Proposed II adders follow a similar trend to the
one highlighted in Table III for random inputs. Even if they are
worse than the Proposed I adders, they outperform in almost all
cases the adders of [10] by 15% and 8% on average for PSNR
and MSSIM metrics. As expected, the adders of the category
A1 exhibit the lower performance since the corresponding
approximate adders have smaller chains relative to A2 and
A3.



10

(a) Original (b) Accurate (c) A1 (d) A1 Prop. I (e) A2 Prop. II

Fig. 12. (a) The reference 8-bit grayscale image and (b) the result of mean filtering when using a fully-accurate 16-bit adder. The result of mean filtering
when using (c) the A1 adder, (d) the Proposed I adder of the A1 category and (e) the Proposed II adder of the A2 category.

TABLE IV
THE PERFORMANCE OF THE APPROXIMATE ADDERS UNDER COMPARISON FOR A MEAN FILTERING APPLICATION RELATIVE TO A FULLY-ACCURATE

RESULT USING THE PEAK SIGNAL-TO-NOISE RATIO (PSNR) AND THE MEAN STRUCTURAL SIMILARITY (MSSIM) QUALITY METRICS.

Image Metric A1 A1 Prop. I A1 Prop. II A2 A2 Prop. I A2 Prop. II A3 A3 Prop. I A3 Prop. II

boat PSNR 16.65 30.83 24.96 29.19 35.88 34.29 30.57 35.21 31.00
MSSIM 0.5204 0.8216 0.6068 0.8699 0.9646 0.9236 0.8396 0.9547 0.8721

bridge PSNR 20.22 30.66 24.13 32.41 42.60 34.64 30.06 42.35 31.02
MSSIM 0.6675 0.8569 0.6254 0.9280 0.9963 0.9389 0.8340 0.9912 0.8770

couple PSNR 19.86 30.22 24.34 31.71 40.40 33.86 28.72 40.64 30.55
MSSIM 0.5005 0.7622 0.5156 0.8379 0.9883 0.8922 0.7141 0.9836 0.8302

house PSNR 21.05 30.35 24.41 33.39 42.70 34.54 28.13 42.34 31.49
MSSIM 0.5372 0.7118 0.5454 0.7982 0.9970 0.9040 0.6892 0.9898 0.8627

female PSNR 19.87 29.63 25.35 30.57 40.95 33.31 28.94 40.71 30.06
MSSIM 0.5185 0.7492 0.5820 0.8250 0.9918 0.8991 0.7332 0.9891 0.8556

mandril PSNR 15.42 28.14 21.87 28.39 35.92 31.61 27.11 35.49 28.45
MSSIM 0.5013 0.7911 0.5346 0.8525 0.9768 0.9063 0.7663 0.9698 0.8389

peppers PSNR 16.29 30.43 23.54 29.85 36.46 33.99 30.13 36.74 30.66
MSSIM 0.4961 0.8006 0.5645 0.8842 0.9750 0.9184 0.8168 0.9813 0.8767

Average PSNR 18.48 30.04 24.09 30.79 39.27 33.75 29.09 39.06 30.46
MSSIM 0.5345 0.7848 0.5678 0.8565 0.9843 0.9118 0.7705 0.9799 0.8590

To better highlight the tradeoff between application-level
performance and hardware complexity, Fig. 13 depicts in the
same diagram the combined performance of two figures-of-
merit: The energy-delay product at 450 ps and the average
PSNR computed after applying mean filtering on all images
using the examined approximate adders. In this case, adders of
the A2 and A3 categories exhibit the best overall performance.
The Proposed I adders of those two categories, i.e., A2-PI
and A3-PI, achieve the largest average PSNR with the highest
energy. On the contrary, The Proposed II adders, i.e., A2-PII
and A3-PII, exhibit a more balanced performance. In those
cases, PSNR is improved relative to the adders of [10], with
either better energy-delay product, as in the case of A3-PII, or
slightly increased for A2-PII. From the A1 category of adders
only the Proposed I adder A1-PI shows a notable performance,
since it achieves an average PSNR close to the average PSNR
of A2 and A3 with the same energy-delay profile.

2) Neural Network: Next, we designed a Multi-Layer Per-
ceptron (MLP) with 784 neurons in the input layer, 500 in
the hidden layer and 10 in the output layer, trained for digit
recognition. The MLP was trained in PyTorch 2.0.1 [29] using
50K 28 × 28 images from the MNIST dataset [30]. Training
was performed with the goal to identify the quantized 8-bit
weights that minimize classification error.

The remaining 10K images of MNIST dataset were used
for the inference stage where we evaluate the accuracy of
the classification using accurate and approximate adders. For
inference, we assume fully accurate 8 × 8 multipliers that

Fig. 13. The combined behavior of the examined approximate adders with
respect to Energy×Delay at 450 ps and the average PSNR achieved for each
case after applying mean filtering to all test images.

produce 16-bits wide products. Addition is performed at 32
bits using fully accurate and several forms of approximate
adders. In the future, we plan to extend this study using also
approximate multipliers [31], [32].

The reference accuracy of the MLP using accurate adders is
96.82%. The accuracy achieved for a variety of approximate
adders is summarized in Fig. 14. The performance for the A2
and A3 adders depicted as straight lines in Fig. 14 corresponds
to the performance achieved by the 32-bit counterparts of the
16-bit A2 and A3 adders shown in Fig. 10. A3 adder that
has a minimum carry chain length of 10 bits and a maximum
carry chain length of 24 bit achieves an accuracy of 96.72%.



11

Fig. 14. Classification accuracy of the proposed approximate parallel prefix
adders with different carry chain lengths compared to state-of-the-art 32-bit
approximate adders.

Similarly, A2 with a minimum carry length of 16 bits and
a maximum carry length of 17 bits achieves an accuracy of
95.55%.

For the proposed adders we considered five cases, each one
characterized by a different minimum and maximum carry
chain length. For instance, solution (22,29) means that the
corresponding 32-bit adder has a minimum carry chain length
of 22 bits and maximum one of 29 bits. All 32-bit adders
consist of 5 prefix levels and have a maximum allowed fanout
of 8. The first three adders synthesized by the proposed method
achieve accuracy greater than 96%. Accuracy degradation
starts to appear on smaller carry chain lengths. The (14,18)
configuration achieves a performance equal to the A2 adder.

E. Evaluation of split-accuracy adders

To complete the evaluation, we compare the split-accuracy
parallel prefix adders synthesized by our method to state-of-
the-art split-accuracy parallel prefix adders [13]. The adders
of [13] consist of an accurate parallel prefix tree on the high-
accuracy part of the design and very simplified logic on the
low-accuracy part. The prefix tree of the high-accuracy part
can follow any prefix topology. At the border between the
high and the low-accuracy part a carry-generate bit is produced
that enters the high-accuracy part as a pseudo carry-in signal
through an additional carry increment stage.

In this comparison we include also an approximate ripple-
carry adder that follows also the split-accuracy paradigm [15],
as a baseline outside the family of parallel prefix adders. In
this case, the low-accuracy part does not involve any carry
generation or propagation and the sum bits are computed
directly from the input bits of the same column. On the
contrary, the high-accuracy part is a complete ripple-carry
adder driven by a carry-in signal of 0.

1) Hardware Complexity: Fig 15 depicts the area-vs-delay
and energy-vs-delay of three 16-bit split-accuracy adders.
For the approximate ripple-carry adder (RCA) and the split-
accuracy parallel prefix adder of [13] (AxPPA) we assume
that the low-accuracy part consists of 4 bits and the high-
accuracy part covers 12 bit positions. The high-accuracy part
of AxPPA is built following a Ladner-Fischer topology. The
proposed adder has a low accuracy part of 4 bits too, and the
maximum carry chain length at each part is equal to the width
of the corresponding part. For an apple-to-apple comparison,
both parallel prefix adders have the same number of prefix
levels and maximum fanout requirements.

(a) (b)

Fig. 15. The (a) Area-Delay and (b) Energy-Delay curves for split-accuracy
16 bits approximate adders when synthesized at 40nm/0.8V for different delay
targets. The width of the low-accuracy part is selected to be 4-bits wide in
all cases.

From Fig. 15 it is evident that the proposed designs are sig-
nificantly faster than any of the two split-accuracy approaches.
AxPPA adders are slower due to the extra carry-increment
stage needed for including the pseudo carry in signal. Also,
this speed benefit does not come with an area or energy cost.
Under equal delay, e.g., at 400 ps, the proposed designs require
41% less area and 31% less energy than AxPPA [13]. The
split-accuracy parallel prefix trees synthesized by the proposed
method are by-construction more area/energy efficient since
effectively they consist of two separate smaller adders attached
together.

Approximate RCA appears to be area/energy efficient but
is significantly slower than the parallel prefix architectures.
In a low-power setup, such parallel prefix adders can tradeoff
their improved timing slack for voltage reduction and thus save
considerable amounts of energy relative to RCAs.

2) Numerical Accuracy: To compare the examined split-
accuracy adders with respect to their numerical accuracy, we
utilized the same mean filtering and neural network application
described in Section IV-D.

TABLE V
THE AVERAGE PSNR AND MSSIM COMPUTED AFTER APPLYING MEAN

FILTERING TO THE IMAGES OF TABLE IV USING THE EXAMINED
SPLIT-ACCURACY ADDERS.

Ours AxPPA-4 RCA-4
Avg. PSNR 36.33 37.35 29.85
Avg. MSSIM 0.9144 0.9541 0.9108

Table V reports the average PSNR and MSSIM achieved by
each approximate adder for all test images of Table IV. AxPPA
adder and the one synthesized by the proposed approach show
almost the same performance in terms of average PSNR, while
AxPPA is better in terms of average MSSIM. Both parallel
prefix solutions outperform the approximate RCA since they
offer better accuracy at the lower part of the design. In overall,
the proposed design exhibits the best overall performance since
it saves significant amounts of area and energy relative to
AxPPA [13], without degrading much the examined image
quality metrics.

Lastly, we tested the performance of the same split-accuracy
adder architectures for computing the inference of the MLP
model used in Section IV-D. Multiplications are considered
accurate and addition is performed approximately at 32 bits.
The results gathered are reported in Fig. 16. For each split-
accuracy adder we tried several alternatives derived after



12

Fig. 16. Inference performance of an MLP trained for the MNIST dataset
using accurate multipliers and split-accuracy 32-bit adders of varying width
for their low-accuracy part.

increasing the width of the low-accuracy part. As long as the
low-accuracy part is 6 bits or less, all architectures behave
equivalently and very close to the fully-accurate result. When
increasing further the width of the lower part the classification
accuracy is degraded for all designs. In the last case that uses
a low-accuracy part of 9 bits the approximate RCA affects
significantly the inference accuracy of the MLP.

V. RELATED WORK

Approximate adder design spans many different design
choices that go beyond the scope of this paper that focuses
on parallel prefix adder design.

For instance, approximate adders can be designed by utiliz-
ing circuit blocks organized in a slit-accuracy configuration.
In this case [14], the adder is divided in two parts: the
accurate one is responsible for adding the most significant bits
and consists of a fully accurate adder, and the approximate
one, which adds the least significant bits and consists of
simple OR/AND gates in place of addition blocks. Follow
up work [33] utilizes error correction to reduce the error
frequency of [14]. Similarly, in [34], the adder is divided in
three parts. The lowest part is implemented by simpler gates
without producing any carry signals, the middle part is an
approximate carry look-ahead adder and the higher part is an
accurate adder. Another gate level approximation is presented
in [4], where a tool for automatic gate pruning is proposed.

Logic-level approximations can be applied at the transistor
level as well. The approximate mirror adder [3] emerges from
addition cells with fewer transistors. Also, approximate full
adders using are presented in [35] and [36].

Another broad category of methods for approximating ad-
dition focuses on the higher level architecture of the adder.
Early efforts construct approximate adders by shortening the
carry chain. For instance, in [37] and later in [38], the Almost
Correct Adder (ACA) and the Variable Latency Speculative
Adder (VLSA) are proposed, respectively. ACA consists of
shorter carry generators that operate in parallel, while VLSA
utilizes ACA’s architecture and reduces the area overhead
by sharing some computational blocks. Error detection and
recovery circuits are also implemented in VLSA. Error com-
pensation has been also recently used in [39].

In [40] and [41], addition is separated in two parts: the
accurate, where the addition is performed accurately, and the
inaccurate one, where an approximate technique is utilized.

In [42], the same approach is enhanced by adding a selector
circuit that determines how the bits will be divided into the
two parts (the accurate and the inaccurate one). The Error-
Tolerant Constant Adder (ETCA) proposed in [43] replaces
the inaccurate part of the adder with a constant output. ETCA
has smaller area and lower power properties, while maintain-
ing acceptable levels of accuracy. The accuracy-configurable
adder [44] includes an error detection and correction circuit.

Approximate carry-select and carry-skip adders have also
been proposed. For example, the speculative carry-select adder
in [45] is divided into n/k smaller adders (n being the bit-
width of the adder and k the target carry-chain propagation
length). Each sub-adder consists of two k-bit adders as needed
by carry-select operation. Splitting the adder to smaller blocks
has been also used in [46] to design approximate carry-skip
adders.

Similarly, the gracefully-degrading accuracy-configurable
adder [47] is split into k-bit smaller adders, each one con-
nected to a multiplexer that selects an appropriate carry-in
connection. This design has been extended in [48] to include
also error correction. In [49] a speculative adder is divided
into smaller adders that include, among other units, a carry
predictor. The consistent carry approximate adder proposed
in [50] follows a similar approach but carry prediction depends
on a wider set of input bits. The carry cut-back adder presented
in [51], utilizes a feedback technique to cut the carry chain
and therefore prevent the activation of the critical path. The
cut signal is generated by a carry propagate block. Finally, the
simple accuracy reconfigurable adder [52] and the block-based
carry speculative adder [53] rely also on smaller adder blocks
and carry prediction.

VI. CONCLUSIONS

Parallel prefix computation of addition offers a versatile
framework for designing adders of various area-power-delay
characteristics. The automatic synthesis of parallel prefix
adders allows the designer to explore deeply the available
design space under the selected constraints. In this work, we
generalize the synthesis of parallel prefix adders to include
also approximate parallel prefix trees that compute carry
chains of shorter length, under strict maximum fanout and
maximum prefix level constraints. To limit the huge design
space, heuristic pruning techniques keep the runtime under
control without degrading the final quality-of-result.

The proposed synthesis approach allows to derive new ap-
proximate parallel prefix adders that have not appeared in open
literature supporting uniform or split accuracy. The derived
adders offer a two-fold benefit: They either offer significantly
better accuracy for a minimum area/power overhead or al-
low for accuracy improvements with modest area and power
savings making them especially beneficial for applications
with power limitations like ambient assisted living systems
developed in domestic environments.

Most importantly, the introduced synthesis engine is avail-
able under a permissive open-source license, which allows
end-users to test it and extend it for future research.

Future work, is planned to explore the interplay between ap-
proximation criteria and how they affect the characteristics of



13

the synthesized parallel prefix adders under Process-Voltage-
Temperature (PVT) variations [54].

ACKNOWLEDGEMENTS

This work is supported by the project ”Study, Design,
Development and Implementation of a Holistic System for
Upgrading the Quality of Life and Activity of the Elderly”
(MIS 5047294) implemented under the Action ”Support for
Regional Excellence”, funded by the Operational Programme
”Competitiveness, Entrepreneurship and Innovation” (NSRF
2014-2020) and co-financed by Greece and the EU (European
Regional Development Fund).

REFERENCES

[1] P. Stanley-Marbell, A. Alaghi, M. Carbin, E. Darulova, L. Dolecek,
A. Gerstlauer, G. Gillani, D. Jevdjic, T. Moreau, M. Cacciotti, A. Daglis,
N. E. Jerger, B. Falsafi, S. Misailovic, A. Sampson, and D. Zufferey,
“Exploiting Errors for Efficiency: A Survey from Circuits to Applica-
tions,” ACM Computing Surveys, vol. 53, no. 3, 2020.

[2] M. Pashaeifar, M. Kamal, A. Afzali-Kusha, and M. Pedram, “A The-
oretical Framework for Quality Estimation and Optimization of DSP
Applications Using Low-Power Approximate Adders,” IEEE Trans. on
Circuits and Systems I, vol. 66, no. 1, pp. 327–340, 2019.

[3] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-Power
Digital Signal Processing Using Approximate Adders,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, vol. 32,
no. 1, pp. 124–137, 2013.

[4] J. Schlachter, V. Camus, K. V. Palem, and C. Enz, “Design and
applications of approximate circuits by gate-level pruning,” IEEE Trans.
on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 5, pp. 1694–
1702, 2017.

[5] R. Zimmermann, “Binary Adder Architectures for Cell-Based VLSI and
their Synthesis,” Ph.D. dissertation, ETHZ, 1998.

[6] S. Knowles, “A Family of Adders,” in Proc. of the IEEE Symp. on
Computer Arithmetic, April 1999, pp. 30–34.

[7] S. Roy, M. Choudhury, R. Puri, and D. Z. Pan, “Towards Optimal
Performance-Area Trade-Off in Adders by Synthesis of Parallel Prefix
Structures,” in Design Automation Conference (DAC), 2013, pp. 1–8.

[8] Y. Ma, S. Roy, J. Miao, J. Chen, and B. Yu, “Cross-Layer Optimization
for High Speed Adders: A Pareto Driven Machine Learning Approach,”
IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol. 38, no. 12, p. 2298–2311, 2019.

[9] R. Roy, J. Raiman, N. Kant, I. Elkin, R. Kirby, M. Siu, S. Oberman,
S. Godil, and B. Catanzaro, “PrefixRL: Optimization of Parallel Prefix
Circuits Using Deep Reinforcement Learning,” in Design Automation
Conference (DAC), 2021, p. 853–858.

[10] D. Esposito, D. De Caro, and A. G. M. Strollo, “Variable Latency
Speculative Parallel Prefix Adders for Unsigned and Signed Operands,”
IEEE Trans. on Circuits and Systems I, vol. 63, no. 8, pp. 1200–1209,
2016.

[11] D. Esposito, D. De Caro, E. Napoli, N. Petra, and A. G. M. Strollo,
“Variable Latency Speculative Han-Carlson Adder,” IEEE Trans. on
Circuits and Systems I: Regular Papers, vol. 62, no. 5, pp. 1353–1361,
2015.

[12] A. Cilardo, “A New Speculative Addition Architecture Suitable for
Two’s Complement Operations,” in Design, Automation Test in Europe
(DATE), 2009, pp. 664–669.

[13] M. M. A. da Rosa, G. Paim, P. U. L. da Costa, E. A. C. da Costa,
R. Soares, and S. Bampi, “AxPPA: Approximate Parallel Prefix Adders,”
IEEE Trans. on Very Large Scale Integration Systems, vol. 31, no. 1,
pp. 17–28, 2023.

[14] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-Inspired
Imprecise Computational Blocks for Efficient VLSI Implementation of
Soft-Computing Applications,” IEEE Trans. on Circuits and Systems I,
vol. 57, no. 4, pp. 850–862, 2010.

[15] P. Balasubramanian, C. Dang, D. L. Maskell, and K. Prasad, “Approx-
imate ripple carry and carry lookahead adders—a comparative analy-
sis,” in 2017 IEEE 30th International Conference on Microelectronics
(MIEL). IEEE, 2017, pp. 299–304.

[16] G. Thakur, H. Sohal, and S. Jain, “FPGA-Based Parallel Prefix Specula-
tive Adder for Fast Computation Application,” in International Confer-
ence on Parallel, Distributed and Grid Computing (PDGC), 2020, pp.
206–210.

[17] F. Ebrahimi-Azandaryani, O. Akbari, M. Kamal, A. Afzali-Kusha,
and M. Pedram, “Accuracy configurable adders with negligible delay
overhead in exact operating mode,” ACM Trans. Des. Autom. Electron.
Syst., vol. 28, no. 1, Jan. 2023.

[18] IC-Lab-DUTH Repository. (2023) Synthesis approximate paral-
lel prefix adders. [Online]. Available: https://github.com/ic-lab-
duth/ApproximatePrefix

[19] N. Weste and D. Harris, CMOS VLSI Design a Circuits and Systems
Perspective. Addison Wesley (3rd Edition), 2010.

[20] B. Lee and V. Oklobdzija, “Improved CLA Scheme with Optimized
Delay,” Journal VLSI Signal Processing Systems, no. 3, p. 265–274,
1991.

[21] P. M. Kogge and H. S. Stone, “A Parallel Algorithm for the Efficient
Solution of a General Class of Recurrence Equations,” IEEE Trans. on
Computers, vol. C-22, pp. 786–792, Aug. 1973.

[22] R. E. Ladner and M. J. Fisher, “Parallel Prefix Computation,” Journal
of The ACM, vol. 27, no. 4, pp. 831–838, Oct. 1980.

[23] R. P. Brent and H. T. Kung, “A Regular Layout for Parallel Adders,”
IEEE Trans. on Computers, vol. 31, no. 3, pp. 260–264, Mar. 1982.

[24] A. Beaumont-Smith and C. C. Lim, “Parallel-Prefix Adder Design,” in
Proc. of the IEEE Symp. on Computer Arithmetic, Apr. 2001, pp. 218–
225.

[25] G. Dimitrakopoulos and D. Nikolos, “High-Speed Parallel-Prefix VLSI
Ling Adders,” IEEE Trans. on Computers, vol. 54, no. 2, pp. 225–231,
2005.

[26] G. Dimitrakopoulos, K. Papachatzopoulos, and V. Paliouras, “Sum
propagate adders,” IEEE Trans. on Emerging Topics in Computing,
vol. 9, no. 3, pp. 1479–1488, 2021.

[27] C. Liu, J. Han, and F. Lombardi, “An analytical framework for evaluating
the error characteristics of approximate adders,” IEEE Transactions on
Computers, vol. 64, no. 5, pp. 1268–1281, 2014.

[28] USC Viterbi - Signal and Image Processing Institute. USC-SIPI Image
Database. [Online]. Available: https://sipi.usc.edu/database/database.php

[29] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[30] L. Deng, “The mnist database of handwritten digit images for machine
learning research [best of the web],” IEEE signal processing magazine,
vol. 29, no. 6, pp. 141–142, 2012.

[31] A. G. M. Strollo, E. Napoli, D. De Caro, N. Petra, G. Saggese, and
G. Di Meo, “Approximate multipliers using static segmentation: Error
analysis and improvements,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 69, no. 6, pp. 2449–2462, 2022.

[32] M. Ahmadinejad and M. H. Moaiyeri, “Energy-and quality-efficient
approximate multipliers for neural network and image processing appli-
cations,” IEEE Transactions on Emerging Topics in Computing, vol. 10,
no. 2, pp. 1105–1116, 2021.

[33] H. Seo, Y. Yang, and Y. Kim, “Design and Analysis of an Approximate
Adder with Hybrid Error Reduction,” Electronics, vol. 9, p. 471, 03
2020.

[34] T. Ban, B. Wang, and L. Naviner, “Design, synthesis and application
of a novel approximate adder,” in International Midwest Symposium on
Circuits and Systems (MWSCAS), 2018, pp. 488–491.

[35] Z. Yang, A. Jain, J. Liang, J. Han, and F. Lombardi, “Approximate
XOR/XNOR-based Adders for Inexact Computing,” in International
Conference on Nanotechnology (IEEE-NANO), 2013, pp. 690–693.

[36] D. Nanu, P. Roshini, D. Sowkarthiga, and K. S. A. Ameen, “Approximate
Adder Design Using CPL Logic for Image Compression,” International
journal of innovative research and development, 2014.

[37] S.-L. Lu, “Speeding Up Processing with Approximation Circuits,”
Computer, vol. 37, no. 3, pp. 67–73, 2004.

[38] A. K. Verma, P. Brisk, and P. Ienne, “Variable Latency Speculative
Addition: A New Paradigm for Arithmetic Circuit Design,” in Design,
Automation and Test in Europe (DATE), 2008, pp. 1250–1255.

[39] D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy, “Design
of Voltage-Scalable Meta-Functions for Approximate Computing,” in
Design, Automation and Test in Europe (DATE), 2011, pp. 1–6.

[40] N. Zhu, W. L. Goh, W. Zhang, K. S. Yeo, and Z. H. Kong, “Design
of Low-Power High-Speed Truncation-Error-Tolerant Adder and Its
Application in Digital Signal Processing,” IEEE Trans. on Very Large
Scale Integration (VLSI) Systems, vol. 18, no. 8, pp. 1225–1229, 2010.



14

[41] N. Zhu, W. Goh, and K. S. Yeo, “An Enhanced Low-Power High-Speed
Adder for Error-Tolerant Application,” in Intern. Symp. on Integrated
Circuits (ISIC), 2010, pp. 69–72.

[42] N. Zhu, W. L. Goh, and K. S. Yeo, “Ultra Low-Power High-Speed
Flexible Probabilistic Adder for Error-Tolerant Applications,” in Intern.
SoC Design Conference, 2011, pp. 393–396.

[43] H. Seo, Y. S. Yang, and Y. Kim, “An energy-efficient imprecise adder
with a lower-part constant approximation,” in International SoC Design
Conference (ISOCC), 2020, pp. 143–144.

[44] A. B. Kahng and S. Kang, “Accuracy-Configurable Adder for Approx-
imate Arithmetic Designs,” in Design Automation Conference (DAC),
2012, pp. 820–825.

[45] K. Du, P. Varman, and K. Mohanram, “High Performance Reliable
Variable Latency Carry Select Addition,” in Design, Automation Test
in Europe (DATE), 2012, pp. 1257–1262.

[46] Y. Kim, Y. Zhang, and P. Li, “An Energy Efficient Approximate Adder
with Carry Skip for Error Resilient Neuromorphic VLSI Systems,” in
Intern. Conference on Computer-Aided Design (ICCAD), 2013, pp. 130–
137.

[47] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu, “On Reconfiguration-
Oriented Approximate Adder Design and Its Application,” in Intern.
Conference on Computer-Aided Design (ICCAD), 2013, pp. 48–54.

[48] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel, “A low latency generic
accuracy configurable adder,” in Design Automation Conference (DAC),
2015, pp. 1–6.

[49] I.-C. Lin, Y.-M. Yang, and C.-C. Lin, “High-Performance Low-Power
Carry Speculative Addition with Variable Latency,” IEEE Trans. on Very
Large Scale Integration (VLSI) Systems, vol. 23, no. 9, pp. 1591–1603,
2015.

[50] L. Li and H. Zhou, “On Error Modeling and Analysis of Approximate
Adders,” in Intern. Conference on Computer-Aided Design (ICCAD),
2014, pp. 511–518.

[51] V. Camus, J. Schlachter, and C. Enz, “A Low-Power Carry Cut-Back
Approximate Adder with Fixed-Point Implementation and Floating-Point
Precision,” in Design Automation Conference (DAC), 2016, pp. 1–6.

[52] W. Xu, S. S. Sapatnekar, and J. Hu, “A simple yet efficient accuracy-
configurable adder design,” IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, vol. 26, no. 6, pp. 1112–1125, 2018.

[53] F. Ebrahimi-Azandaryani, O. Akbari, M. Kamal, A. Afzali-Kusha, and
M. Pedram, “Block-Based Carry Speculative Approximate Adder for
Energy-Efficient Applications,” IEEE Trans. on Circuits and Systems II,
vol. 67, no. 1, pp. 137–141, 2020.

[54] K. Papachatzopoulos and V. Paliouras, “Path-based delay variation
models for parallel-prefix adders,” IEEE Transactions on Emerging
Topics in Computing, 2023.

Apostolos Stefanidis received the Diploma in Elec-
trical and Computer Engineering from the Democri-
tus University of Thrace, Xanthi, Greece, in 2017,
where he is currently pursuing his Ph.D. degree.

His current research interests include electronic
design automation, with emphasis in machine learn-
ing applications on autonomous timing and power
optimization.

Ioanna Zoumpoulidou received the Diploma in
Electrical and Computer engineering from the Dem-
ocritus University of Thrace, Xanthi, Greece, in
2022.

Her current research interests include electronic
design automation, with high-level synthesis tech-
nologies.

Dionysios Filippas received the Diploma degree in
electrical and computer engineering and the M.Sc.
degree in computer engineering from Democritus
University of Thrace, Xanthi, Greece, in 2019 and
2021, respectively, where he is currently working
toward the Ph.D. degree.

His research interests include energy-efficient
machine-learning accelerators, high-level synthesis,
floating-point arithmetic and fault-tolerant systems.

Giorgos Dimitrakopoulos received the B.S., M.Sc.,
and Ph.D. degrees in Computer Engineering from
the University of Patras, Patras, Greece, in 2001,
2003, and 2007, respectively.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineering,
Democritus University of Thrace, Xanthi, Greece.
He is interested in the design of digital integrated
circuits, energy-efficient data-parallel accelerators,
functional safety architectures, and the use of high-
level synthesis for agile chip design.

He received two Best Paper Awards at the Design Automation and Test in
Europe (DATE) Conference in 2015 and 2019, respectively. Also, he received
the HIPEAC Technology Transfer Award in 2015.

Georgios Ch. Sirakoulis (Member, IEEE) received
the Dipl.Eng. and Ph.D. degrees in electrical and
computer engineering from the Democritus Univer-
sity of Thrace (DUTh), Greece, in 1996 and 2001,
respectively. He is a Professor and the Head of the
Department of Electrical and Computer Engineering,
DUTh. He has published more than 340 technical
papers. He is the co-editor/co-author of nine books,
the coauthor of 28 book chapters, and a guest
editor of 15 special issues. His current research
interests include complex electronic systems, future

and emergent electronic devices, circuits, models, and architectures, unconven-
tional computing memristors, cellular automata, quantum cellular automata,
bioinspired computation/biocomputation and bioengineering, and modeling
and simulation. He is an Editor of IEEE TRANSACTIONS ON NANOTECH-
NOLOGY, IEEE NANOTECHNOLOGY MAGAZINE, Microelectronics, Sci-
entific Reports, Plos ONE, Microelectronics Journal and Integration, VLSI
Journal, Journal of Cellular Automata, International Journal of Unconventional
Computing, Parallel Processing Letters, etc.


