
Low Power Networks-on-Chip

PhD Thesis

Ioannis Seitanidis

2018

Advisor: Assistant Prof. Giorgos Dimitrakopoulos

Department of Electrical and Computer Engineering

Democritus University of Thrace, Xanthi, Greece

Abstract

The importance of System-on-Chip (SoC) interconnect technology
is growing with each generation of new SoC devices. Networks-
on-chip (NoC) provided the needed disruptive interconnect tech-
nology to scale SoC interconnects from simple buses to fully-
fledged interconnection networks that behave like mini internets
inside the chip. NoCs are now part of all SoCs and are being used
in a variety of market segments, ranging from multimedia and
telecom to automotive and medical devices.

There are several signs, however, that the current NoC architec-
tures are faced with major challenges in satisfying stringent per-
formance and power requirements. To this end, we propose three
complementary techniques that allow for the design of low-power
NoC architectures and the development of a methodology for au-
tomatically verifying the NoC’s peak power consumption.

Two of the techniques tackle the reduction of the power consumed
by NoC buffers. In the first approach, a low-cost virtual-channel-
based shared buffer is proposed that drops the buffering require-
ments close to the absolute minimum, without sacrificing network
performance. The proposed buffers can be used on the links, as a
distributed elastic buffering architecture, or at the inputs and the
outputs of NoC routers. The second approach employs multi-bit
register composition to reduce the number of register cells of the
design, thus significantly reducing the overall clock-tree complex-
ity and power. Multi-bit register composition follows a balanced
restructuring approach, where the reduction of the number of reg-
isters does not degrade timing slack, wire length or routing uti-
lization.

The introduced low-cost buffers, after being enhanced with self-
testability hardware components, have been employed in the de-
sign of a scalable distributed NoC architecture that employs vir-
tual channels. The proposed architecture removes the burden of
the tight placement of NoC components and allows them to be
physically spread throughout the chip, irrespective of the network
topology. This feature can be used either for reducing power con-
sumption, or achieving higher clock rates.

i

The novel micro-architectures and the clock-tree complexity re-
duction methodology are complemented by a fully-automated
methodology that produces appropriate traffic and data patterns
that cause peak power consumption within the NoC. In this way,
one can have a realistic estimate of a design’s peak power con-
sumption, which directly impacts other salient system attributes,
such as performance, implementation costs, battery life, and relia-
bility.

ii

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor, Gior-
gos Dimitrakopoulos, for the continuous support during my Ph.D, for
his patience, motivation, and immense knowledge. His guidance helped
me a lot during my PhD research. His advice on both research and ca-
reer plans has been priceless. I am grateful to Giorgos for all the profes-
sional and research opportunities he offered me.

I would also like to thank the members of my advisory and defence
committee, Ioannis Andreadis, Chrysovalantis Kavousianos, Konstanti-
nos Margaritis and Giorgos Syrakoulis, for evaluating and reviewing my
work, and for providing insightful comments that helped to improve
this thesis. Especially, I would like to thank Chrysostomos Nicopoulos
for our productive collaboration and his beneficial contribution in my
published work. Also, my sincere thanks goes to Ioannis Karafyllidis
for providing me with his helpful advice.

I thank my fellow labmate, Anastasios Psarras, for the stimulating dis-
cussions and for working together. Also, I need to thank my col-
leagues, Pavlos Mattheakis, Laurent Masse-Navete and David Chinnery,
for working together at Mentor Graphics.

I am very grateful to the funding received through the Onassis Founda-
tion and its Program of Scholarships for Hellenes.

Also, I need to thank all the people that we hung around during my
studies and had a beer, Dimitris, Nikos, James, Aimilios, Giannis, Gian-
nis, Thodoris, Thanasis, Kiki.

iii

Acknowledgements

A big “thank you” to my sister, Martha, and my parents, Dimitrios and
Despoina. I would not have made it without their support and encour-
agement. This thesis is dedicated to them.

iv

Contents

Acknowledgements iii

Contents v

1 Introduction 1
1.1 The Importance of Networks-on-Chip 2
1.2 The Need for Low-Power NoCs 5
1.3 Thesis Contribution . 7
1.4 Thesis Organization . 9

2 Background and Related Work 13
2.1 Overall NoC organization 13

2.1.1 Links and Packets 14
2.1.2 Router Functionality 15
2.1.3 Topologies . 16
2.1.4 Routing . 17

2.2 Link-Level Flow Control . 19
2.3 Router Microarchitecture . 21
2.4 Low-Power NoC Design . 26

2.4.1 Power-aware Microarchitectures 27
2.4.2 Wire Engineering . 29
2.4.3 Dynamic Voltage Frequency Scaling 31
2.4.4 Power Gating . 33

3 ElastiStore: Low-Cost Virtual-Channel Buffers 37

v

Contents

3.1 Elastic Channels and Buffers 38
3.2 VC Flow Control and Buffering 40
3.3 VC Buffering on Pipelined Links 42
3.4 The ElastiStore Buffer Architecture 44

3.4.1 Flow Control . 45
3.4.2 Hardware Implementation 47

3.5 Integration of ElastiStore in NoC Routers 50
3.6 Evaluation . 53

3.6.1 Hardware Implementation 53
3.6.2 Network Performance 55
3.6.3 Full-System Simulation Results 56
3.6.4 Virtual Channels vs. Multiple Physical Networks . 59

3.7 Related Work . 62
3.8 Conclusions . 64

4 Distributed VC-based Network-on-Chip Architecture 67
4.1 Modeling Low-latency On-Chip Networks 68
4.2 ElastiNoC: Modular VC-based Architecture 73

4.2.1 Modular Router Construction 74
4.2.2 The Merge Unit (MU) 76

4.3 ElastiNoC Self Testability 78
4.4 Experimental Results . 81

4.4.1 Hardware Complexity 81
4.4.2 Fault Coverage and Test Application Time 83
4.4.3 Network Performance 84

4.5 Conclusions . 86

5 Multi-Bit Register Composition 87
5.1 Introduction . 87
5.2 Overall Flow and Goals . 90

5.2.1 Goals of the MBR Composition Flow 90
5.2.2 The Flow for MBR Composition 91

5.3 MBR Decomposition and Optimization 92
5.4 MBR Composition . 94

5.4.1 Compatibility Checks 94
5.4.2 MBR Candidate Enumeration and Incomplete MBRs 97
5.4.3 ILP Formulation . 99

vi

Contents

5.4.4 Weights to Limit Wire-length and Congestion . . . 100
5.4.5 MBR Mapping . 104
5.4.6 MBR Connection and Placement 105

5.5 Post MBR Composition Steps 107
5.5.1 MBR Downsizing . 107
5.5.2 Recovery of the Unused Pins of Incomplete MBRs 108

5.6 Experimental Results . 109
5.7 Conclusions . 118

6 Peak-Power Traffic for Networks-on-Chip 121
6.1 Peak-power Traffic Characteristics and Problem Formula-

tion . 123
6.1.1 The Interplay of Contention and Data Switching

Activity . 124
6.1.2 Permutation Traffic and Network Utilization 126
6.1.3 The Case of Heterogeneous NoCs 128

6.2 Generation of Peak-Power Traffic 131
6.2.1 The Power Cost of Each Path 134
6.2.2 Effective Throughput of Each Path 135
6.2.3 Maximizing The Data Switching Activity 136
6.2.4 Overall Flow and Examples 138
6.2.5 The Complexity of The ILP 141

6.3 Experimental Evaluation . 142
6.3.1 Homogeneous NoCs 143
6.3.2 Heterogeneous Topologies 148

6.4 Conclusions . 151

7 Conclusions 153
7.1 Summary . 153
7.2 Future Work . 155

Bibliography 157

vii

Chapter 1

Introduction

Information and communication technology innovation has been en-
abled for more than three decades by advances in semiconductor tech-
nology and computer architecture. On the one hand, innovations within
the semiconductor domain have repeatedly provided more transistors
(Moore’s Law) for roughly constant power and cost per chip [49]. On
the other hand, computer architects took advantage of these extra avail-
able on-chip transistors and provided sophisticated techniques in order
to transform the transistor budget into performance benefits.

Nowadays, integration capacity continues with scaling, though with
limited performance and power benefit (Moore’s gap). Multicore pro-
cessor chips have been recruited to cover this gap [54]. The additional
chip area offered by each new technology generation is filled with more
cores that run at nearly constant frequency, thus transforming complex
single-core architectures to Multi- or Many-Processor System-on-Chip
(MPSoC) architectures. This design paradigm is further enhanced by
on-chip cores of different capabilities (aka, heterogeneous multi-cores)
in an effort to maximize energy efficiency that avoids dark silicon [32],
and maintains high computation power.

In future MPSoCs, the energy expended for data movement across the
various chip components (GPUs, CPUs, on-chip memories, DSP accel-
erators, and IO devices) will have a critical effect on achievable perfor-
mance and energy dissipation [23]. Every nano-joule of energy used to
move data up and down the memory hierarchy, as well as synchroniz-

1

1. Introduction

ing the execution across and between cores takes away from the available
(limited) chip power budget, thus limiting the energy available for the
actual computations. Therefore, even if compute architectures evolve
above expectations and new programming models allow the exploita-
tion of the massive hardware parallelism, it is expected that the utiliza-
tion of the system (number of processing cores that can be active at a
given time) will be prohibited by the interconnection medium.

Network-on-Chip (NoC) provided the needed, disruptive interconnect
technology that helped mitigate the interconnect and communication
challenges of nanoscale SoC designs [88, 59, 84]. The seminal idea of
letting the communication of multicore chips resemble little Internets,
where a NoC transfers data between cores in packetized format, pro-
moted system composability and scalability significantly.

1.1 The Importance of Networks-on-Chip
The NoC connects hundreds of disparate IP blocks, each with hundreds
of interface signals, and dozens of transaction protocol attributes [46]. It
does it in a way that each IP need not know the protocol details of any
other, and does it while physically distributed across the chip, as seen
in Fig. 1.1. NoC technology is very important for modern chip designs
for the following reasons:

It is critical to CPU and GPU/accelerator performance in SoCs: The
NoC is the connection between processors and coherence controllers,
lastlevel system caches, and DRAM memories as shown in Fig. 1.1(a).
Increases in CPU or GPU performance are only useful with a corre-
sponding increase in interconnect bandwidth.

Provides the bandwidth and meets latency requirements: Different IPs
have different quality of service (QoS) requirements. CPUs, cameras,
and displays are latency critical, while others such DMA engines and
video codecs are bandwidth hungry. The interconnect handles IPs of
different frequencies, sizes, and protocols and serves as the place to
implement QoS controls to avoid performance degradation.

Mixes interface protocols and avoids deadlocks: The heterogeneous
compute IPs are prebuilt using mostly standard or custom interfaces

2

1.1. The Importance of Networks-on-Chip

(a) (b)

(c) (d)

Figure 11: The components of a modern SoC and an example physical floorplan where the
IP blocks span multiple mm and the NoC should connect all the highlighted dots together
(Figures taken from [58]). (a) The components of a modern SoC, (b) the SoC floorplan,
(c) NoC links need to be pipelined to cover long wires, and (d) routing congestion increases
with NoC’s complexity.

that drive what protocols must be supported . When the NoC comes
into the picture, it must support all of those different protocols with
minimal overhead and a fair degree of configurability. The NoC takes
by design all necessary precautions to avoid any deadlock conditions
that are possible especially when mixing several protocol semantics.

The last IP configured in a SoC: SoCs are assembled out of internally-
developed and commercial IP blocks, and one of the important differ-
entiators is how that IP is assembled together [118]. While the majority
of the IP blocks are proven, established, and not very configurable, it
is the interconnect IP that is revised many times during the course of a
project.

3

1. Introduction

Enables network virtualization: A NoC interconnect may contain mul-
tiple physical networks. Over each physical network, there may exist
multiple virtual networks, wherein different message types are trans-
mitted over different virtual networks. Virtual channels separate traffic
in time instead of space thus simplifying interconnect and reducing re-
timing requirements, while keeping different traffic classes flowing.

Has the longest physical connections between cells: The NoC con-
nects all the IPs on a chip, even ones that are physically far apart (see
Fig. 1.1(b)). As a result, interconnect logic signals fan out over very long
distances [58]. Interconnect RC delay (R: Resistance, C: Capacitance) not
only has by far the lion’s share of the total delay, but its variation across
the metal stack has reached over one order of magnitude between the
lowest and the highest metal layers, while the resistance contribution
of vias increases dramatically [75]. The NoC, which utilizes a mixture
of metal layers for inter- and intra-node connections in a modern SoC,
feels the largest pressure. This makes it necessary to pipeline the NoC
and constrain the placement of pipeline stages within the floorplan (see
Fig. 1.1(c)).

Has a big impact on wire routing congestion: The NoC has a particu-
larly high wire-to-gate ratio. This causes parts of the physical layout of
the chip to have high wire congestion, which may possibly render the
design un-routable, i.e., the wire metal layers do not suffice to route
the nets of the design. Careful design of the NoC’s topology mini-
mizes congestion within the bandwidth requirements of the design (see
Fig. 1.1(d)).

Spans across many chiplets: 2.5D (interposer-based stacks of chiplets)
and 3D integration technologies have been pursued as a potential so-
lution to help integrate more functions within confined available di-
mensions and/or reduce wire dimensions [71]. Such approaches are
expected to remove a significant energy overhead related to off-chip
communication. However, they will effectively increase the available
transistors per chip and the number of endpoints that the NoC should
connect.

Critical component for ensuring functional safety: The proliferation
of SoC technology into automotive, industrial and medical markets re-

4

1.2. The Need for Low-Power NoCs

quires the addition of functional safety features currently not present
in the available SoCs [47]. Design-for-Functional-Safety accepts the fact
that even correctly designed systems may possibly fail and organizes the
appropriate reactions needed (e.g., how to return the system to a safe
state when detecting a hazardous condition or system malfunction). As
a reaction to the increased need for functional safety and keeping the
added hardware overhead under control, the amount of extra hardware
added to enable functional safety follows the level of integrity needed at
each hardware module within the SoC [116]. The NoC that connects all
the system’s component should receive as much attention as the most
critical component that it connects, since it will be the NoC that would
deliver the alarm and reaction messages in the case of an emergency,
irrespective of the state of the system at the time of failure.

1.2 The Need for Low-Power NoCs
The ideal energy-delay of a NoC traversal should be that of just the on-
chip links from the source to the destination, as shown in Fig. 1.2(a).
However, this would require each core to have a direct connection with
all other cores which is not scalable.

Packet-switched NoCs share links by placing routers at the intersections
to manage buffering, arbitration for the crossbar switch, and routing of
the flits in order to avoid collisions while the link is occupied, at the
cost of increased delay and power, as shown in Fig. 1.2(b). Additional
clock endpoints, i.e., the registers of the router’s buffers and state, are
necessarily added that increase the complexity of the clock tree that
needs to drive the distributed placed NoC components.

But a NoC has advantages that can overcome this extra logic and the
accompanying area and power overhead. First, bandwidth is enhanced
by sharing network channels across all clients. In contrast, dedicated
wiring often leaves many wiring resources idle at times of peak load.
Second, transferring packet data requires fewer wires than a traditional
bus. For example, control information is encoded in the packets rather
than on separate wires [55]. In addition, data paths can be narrower be-
cause they can be sized for sustainable bandwidth rather than the max-

5

1. Introduction

RRR R

NINI
NINI

Ideal Communication

Delay = Wire Delay

Energy = Wire Energy

NoC

Delay = Hops*(DR + DLT)

Energy = Hops*(ER + ELT)

Clock Root

Network

Interface

Router

(a) (b)

Figure 12: Ideal vs real energy for on-chip data transfer. On one hand networks enable
sharing of resources, which reduces the overall power consumption relative to dedicated
wiring, but, on the other hand, considerable power overhead still remains that needs to be
removed. DR and DLT represent the delay in cycles of router and link traversal, while ER
and ELT are the associated energy costs.

imum required on a given cycle, as in a crossbar. Narrower data paths
require narrower FIFOs, which consume less logic and die area [24].

Also, using a NoC to replace top-level wiring has advantages of struc-
ture, performance, and modularity. A network structures the top-level
wires simplifying their layout and giving them well-controlled electrical
parameters. These well controlled electrical parameters in turn enable
the use of high-performance circuits that result in significantly lower
power dissipation and higher bandwidth that is possible with conven-
tional circuits [25].

Finally, due to the locality of traffic, the NoC guarantees that only the
wires that should receive traffic would be activated and thus allowing
for energy-proportional communication, where power consumption is
proportional to the amount of traffic it is moving [40].

Even if the NoC is a more scalable and power efficient solution relative
to dedicated global wiring it still has a lot of room of improvement. At
the moment a NoC constitutes around 10-15% of SoC’s power consump-
tion mostly due to buffering (sequential logic and clocking) and link
traversal [29]. As the number of cores increases, it is going to become
a significant challenge to sustain the current per-core bandwidth given
the super-linear increase in network power consumption. The projected
interconnect power by scaling up existing network designs far exceeds a
practical power budget. A low power interconnect design is imperative
to the realization of a 1000 core processor.

6

1.3. Thesis Contribution

1.3 Thesis Contribution
In this work, we adopt a power-driven approach towards scaling on-
chip interconnects to meet the bandwidth and latency targets necessary
in high-performance processors. Our contributions are threefold:

We focus both on reducing the power overhead of buffering and and
flow control by proposing new simplified virtual-channel buffers and
simplified distributed NoC architectures. We extend elastic buffer (EB)
architectures to support multiple virtual channels (VCs), and we derive
ElastiStore, a novel lightweight EB architecture that minimizes buffering
requirements without sacrificing performance [126]. ElastiStore uses just
one register per VC and a shared buffer sized large enough to merely
cover the round-trip time that appears either on the NoC links or due to
the internal pipeline of the NoC routers. The integration of the proposed
EB scheme in the NoC router enables the design of efficient architec-
tures, which offer the same performance as baseline VC-based routers,
albeit at a significantly lower cost.

ElastiStore is envisioned as an archetypical primitive for future, ex-
tremely low-cost NoC router implementations, where the performance
and functionality enhancements provided by VCs cannot be sacrificed.

Building on top of ElastiStore, we present ElastiNoC, a novel distributed
VC-based router architecture that enjoys all the benefits offered by VCs
and leads to efficient silicon-aware implementations [128]. The pro-
posed architecture utilizes ElastiStore buffering and allows for modu-
lar pipelined organizations that increase the clock frequency. Moreover,
it offers maximum freedom in terms of physical placement, by allow-
ing the NoC components to be physically spread throughout the chip,
irrespective of the network topology. The combined effect of all sup-
ported features enables significant delay reductions under equal perfor-
mance, when compared to state-of-the-art VC-based NoC implementa-
tions, which can be equally translated to significant power reductions
under the same performance.

ElastiNoC offers a shift in the design philosophy of VC-based NoC
routers from centralized and monolithic structures to modular and dis-
tributed components that can be stitched together to form a larger entity,

7

1. Introduction

while still providing full VC support and extensive flexibility during
physical placement.

Moreover, the careful addition of self-test structures allows ElastiNoC
to enjoy fully distributed Built-In Self Testability (BIST), where testing
unfolds in phases and reaches high fault coverage with small test appli-
cation time. Self testing imbues ElastiNoC with a valuable (albeit often
ignored) asset, which greatly enhances its viability to much larger future
designs.

The distributed nature of every NoC design imposes additional con-
straints to the global clock tree of the SoC. Clock pins of NoC buffers
are distributed throughout the layout thus increasing the number of
clock tree branches, the clock wirelength as well as the clock buffers
that need to drive those pins. To reduce the complexity of the clock tree
the registers implementing the NoC’s buffers can be replaced by multi-
bit registers (MBRs) thus effectively reducing significantly the number
of clock endpoints. The proposed MBR composition follows a balanced
restructuring approach that is applied after global or detailed place-
ment [122, 123]. Its goal is to minimize the total number of registers, and
simplify subsequent clock tree synthesis, while taking care that any po-
tential degradations in timing slack, wire length, or routing congestion
do not offset the power benefits of a lighter clock tree. The proposed
methodology, although initially tackled the clock-tree power of NoC’s
buffers, can find wider applicability by identifying nearby compatible
registers that can be merged without degrading timing, and without
reducing the ”useful clock skew” potential.

Finally, early estimation of the peak power consumption of a system
under development is crucial in assessing the design’s reliability and
thermal profile, and for benchmarking various architectural options and
chip-level power management features. In this thesis, we present a high-
level systematic methodology for generating the appropriate traffic pat-
terns that trigger the peak power consumption in a Network-on-Chip
(NoC), irrespective of the latter’s structural and functional properties.
The generation of peak-power traffic is performed by solving a novel
optimization problem based on Integer Linear Programming (ILP) [125]
(or by identifying hamiltonian cycles on channel dependeny graphs
[124]), which models the traffic that can realistically flow in the network,

8

1.4. Thesis Organization

thus avoiding any fake and pessimistic scenarios. This formulation can
handle arbitrary network configurations and routing algorithms, includ-
ing heterogeneous network topologies with multiple link widths and
voltage/clock domains. The proposed technique maximizes both the
network utilization and the data switching activity, thereby causing, on
average, 4× higher power consumption than synthetic traffic patterns
with random behavior. Most importantly, the proposed method reveals
the realistic ceiling of the NoC’s peak power consumption, by reporting
significantly lower peak power (3× less), as compared to fake worst-
case scenarios that can never, in fact, occur during the NoC’s normal
operation.

1.4 Thesis Organization
The remainder of this thesis is organized as follows.

Chapter 2 discusses the basic architecture and microarchitecture prop-
erties of Networks-on-Chip covering partially the properties of their
physical implementation focusing on their power consumption. Addi-
tionally, low-power techniques are discussed and their applicability on
NoCs is described, accompanied by a complete review of NoC-related
low-power techniques covering among others dynamic voltage and fre-
quency scaling, clock/power gating and link encoding for minimum
switching activity, as well as NoC topology and routing reconfiguration
and NoC dynamic clock throttling.

Chapter 3 presents the basic architecture of the ElastiStore and the in-
tegration into NoC routers. Initially, the operation of elastic flow con-
trol for the cases of single and multiple VCs is analyzed focusing on
the relation between the chosen buffering architecture and the achieved
throughput. Next the core architecture of ElastiStore buffers is described
in detail together with its relationship to arbitrary link round-trip times.
The integration of ElastiStore buffers within NoC routers is presented
later on together the experimental results that demonstrate, by the inte-
gration of ElastiStore in both single-cycle and pipelined NoC routers, the
same performance as baseline VC-based routers, albeit at a significantly
lower area cost.

9

1. Introduction

Chapter 4 introduces ElastiNoC architecture which enables the mod-
ular construction of pipelined routers. At first, we develop a simple
intuitive analytical model that connects the network latency with the
routers’ oper- ating clock frequency and their internal pipeline organi-
zation. The goal is to construct a model that enables the designer to
derive a first-order approximation to an optimal configuration, given
certain parametrical constraints. Motivated by the outcome of the de-
rived model, we produce new designs for NoCs that yields highly-
scalable NoC implementations. The augmentation of ElastiNoC with
self-testability capabilities is also presented, which enables NoC routers
to conduct testing sessions in a modular manner over multiple phases,
that achieve high fault coverage (in excess of 99%). The experimental
results presented based on both network simulations and standard-cell-
based hardware synthesis implementations validate the efficacy and
efficiency of ElastiNoC.

Chapter 5 discusses the multi-bit register (MBR) composition techniques,
to reduce the complexity of the clock tree. First, we discuss the goals
of a successful MBR composition and present briefly the overall MBR
composition flow. Then, we present the details of MBR decomposition
and optimization. In the following, the compatibility criteria that de-
termine which registers can be composed into MBRs are introduced,
together with the novel ILP formulation that helps in minimizing the
number of registers. The placement and mapping of the assigned MBRs
to specific cells of the library is also discussed. The chapter concludes
with the introduction of the post-MBR composition optimization steps
and the presentation of a complete set of experimental results covering
industrial designs.

Chapter 6 discusses the importance of the estimation of the peak power
consumption of a system and presents a novel methodology for gener-
ating traffic patterns that trigger NoCs’ peak power. Our presentation
begins with the intuition that we developed for selecting the format of
the traffic patterns needed for triggering the peak power consumption
of the NoC in a controllable manner. Then, we introduce the ILP formu-
lation that generates the appropriate traffic pattern for each NoC con-
figuration. Our presentation is completed with the experimental results
that prove the superiority of the proposed methodology.

10

1.4. Thesis Organization

Finally, a summary of our work including also its future research aspects
is covered in Chapter 7.

11

Chapter 2

Background and Related Work

The number of components on a chip is rapidly growing due to in-
creasing levels of integration, system complexity and shrinking transis-
tor geometry. In both System-on-Chip (SoC) and Chip Multi-Processors
(CMP) systems, the on-chip interconnect plays a vital role in provid-
ing high-performance communication between the various components.
Due to scalability limitations of traditional buses and crossbar based
interconnects, Network-on-Chip (NoC) has emerged as a paradigm to
interconnect a large number of components on the chip. NoC is a global
shared communication infrastructure made up of several routing nodes
interconnected with each other using point-to-point physical links.

2.1 Overall NoC organization
The general structure of the interconnect system is shown in Figure 2.1.
Each core, acting as a communication master, is presenting read and
write transactions (or cache coherence requests) to the interconnect that
gives the illusion of a slave to each master IP. The master interface of the
cores is attached to the network interfaces (NIs) of the interconnect that
translate the interface protocol to an internal packetized flow-control
protocol that allows network transactions to travel in the network and
get delivered to their destination as network packets. At the other end,
the interconnect is attached to one or many ports of the hosting system
that presents itself as one or many slave interfaces. The interconnect
should play the role of the master for this connection. This is achieved

13

2. Background and Related Work

Figure 21: The general structure of the interconnect architecture.

via the reverse network interfaces that translate the intra-network pro-
tocol of packet transfers to master read and write transactions.

The NI is responsible for both sending packets to the network as well as
receiving packets from the network and after the appropriate manipu-
lation to present it to the connected IP core according to the semantics
of the interface.

2.1.1 Links and Packets
Packets containing more than one word (aka flit – flow-control digit)
are serialized and pass the link in multiple clock cycles. The first flit,
called the header of the packet, denotes the beginning of the packet and
contains the identification and addressing information needed by the
packet, including the address of its source and its destination. The last
flit of the packet is called the tail flit and all intermediate flits are called
the body flits. Each packet should travel on each link of the network as
a unified entity since only the header of the packet carries all necessary
information about the packet’s source and destination.

Figure 2.2 depicts the wires needed in a network-on-chip channel that
supports many-flit packets. Besides data wires and necessary flow con-

14

2.1. Overall NoC organization

Head

Body

Body

Tail

Link
width

sourceID destinationID packetNO

data

valid

ready

isHead

isTail

sender receiver

packet framing

flit flow control

flit ID

Figure 22: The additional signals added in the links to distinguish the type of each arriving
flit.

trol signals (ready/valid is used in this example) two additional wires,
e.g., isHead and isTail are needed that encode the type of the flit that
traverses the channel per cycle. isHead and isTail signals are mutually
exclusive and cannot be asserted simultaneously. When they are both
inactive and valid=1, it means that the channel holds a body flit.

2.1.2 Router Functionality
The interconnection network which is the core of the NoC should trans-
fer the packets produced at the NIs to their destination. The structure
of the network and the possible paths between any pair of source and
destination is determined by the network topology. The router is the
hardware module placed at the crossroads of network topologies and
should forward to the correct output all traffic that arrives at its inputs
(see Figure 2.3(a)). Each input/output port of the router that is con-
nected to the networks links should be independently flow controlled
providing lossless operation and high communication throughput.

The router should support in parallel all input-output permutations,
as depicted in Figure 2.3(b). When only one input requests a specific

15

2. Background and Related Work

ACC NI

DSPNI

ACC NI

RAMNI

CPUNI

CPU NI

Router

Link
Resolve ContentionArbitrary IO

permutations

(a) (b)

Figure 23: A network-on-chip consisting of routers and links that reach the systems modules
via the network interfaces.

output, the router should connect the corresponding input with the des-
ignated output. When two or more inputs compete for gaining access to
the same output in the same cycle the router is responsible for resolving
the contention. This means that only one input will gain access to the
output port. The flits of the input that lost stay it the input buffer of
the current router and retry in the next cycle. Alternatively, the flits of
the lost input can be misrouted to the first available output and move
to another node of the network, hoping that they will reach from there
their destination. Misrouting actually does not resolve contention, but
spreads it in space (in the network), while the baseline approach spreads
contention in time by allocating one output to one input in each clock
cycle.

2.1.3 Topologies
In a network, the topology is the arrangement of nodes and channels. It
determines the interconnection of nodes and can usually be modeled as
a graph. The structure of the network topology directly determines the
maximum communication throughput among the connected nodes, the
complexity of the routers that implement the topology and the latency
that each packet experiences when travelling in the network. In most
cases, packet latency and router complexity are inversely proportional.
In other words, the smaller the hop count allowed by the topology and
the associated routing algorithm, the more number of input and output
ports are needed by the routers of the network; hop count is the number
of routers that a packet must pass in order to travel from source to
destination.

16

2.1. Overall NoC organization

(a) Ring (b) 2D Mesh

Core Core Core

Core Core

Core Core Core

R R R

R

RRR

R

Figure 24: Two different topologies: (a) a 8-node ring and (b) a 9-node 2D Mesh.

Figure 2.4 shows two different topologies used to connect homogeneous
tiled cores: (a) a ring and (b) a 2D Mesh. The NoC follows the physical
layout of the existing IP cores of the chip and it should fit in the available
space. In case of homogeneous CMPs, designers can choose between
regular and homogeneous topologies, like rings and meshes.

Topology affects the physical characteristics of the links. Longer wires
need repeaters to achieve the timing constraints increasing the power
consumption. Moreover, the link may have to be pipelined if the con-
straints are not met, which lead to increased round trip times and more
buffering in the routers.

2.1.4 Routing
Once a packet is injected in the network a mechanism is required that
will inform the packet which output to follow at each intermediate
router, in order to get closer to its destination. This mechanism is im-
plemented by the routing computation logic at each router. Routing
computation implements the routing algorithm which is a network wide
operation that manages the paths that the packets should follow when
travelling in the network. Consequently, each router should respect the
properties of the routing algorithm and forward the incoming packets
to the appropriate output following the path decided by the routing
algorithm.

The routing algorithm, if not designed appropriately, may lead to a

17

2. Background and Related Work

Figure 25: (a) A 2D mesh network with XY routing algorithm and (b) A 2D mesh network
with SRh routing algorithm.

deadlock condition. A deadlock is formed when a cyclic dependency
chain is formed among packets requesting an occupied resource of the
network, thus no packet can make forward progress any more.

Deadlock-free routing algorithms guarantee that no cyclic dependen-
cies are possible within the network, by limiting the paths a packet can
follow to reach its destination. This path limiting process is actually
a network-level planning on the allowed turns that a packet can take
when traversing the networks links and routers. Figure 2.5 shows exam-
ples of deadlock-free routes, where the arrows on the network constitute
carefully-designed turn prohibits. For example, a packet routed under
the deadlock-free XY routing algorithm in a 2D mesh is only allowed to
turn once during its route, from direction X to Y.

Alternatively, routing deadlocks can be avoided by the employment
of virtual channels. Virtual channels correspond to parallel per input
buffers that the routing algorithm uses to avoid any cycle formation:
the acquisition of each virtual channel by a packet when moving in the
network is done in a fixed and predefined order that avoids completely
cyclic dependencies and allows more freedom in routing packets inside
the network. In fact, in a graphic interpretation, virtual channels actu-
ally transform every cyclic connection to a screw-like connection where
multiple crossings of the same channel are only allowed on a different
virtual channel. Although VCs offer the maximum possible flexibility

18

2.2. Link-Level Flow Control

the design of virtual-channel-based routers incurs a significant cost rel-
ative to simpler wormhole routers. This cost can be possibly amortized
when large number of virtual channels should be supported.

2.2 Link-Level Flow Control
The flow of flits on the links of the network is determined by the credit-
based flow control policy that allows for safe and lossless operation with
the minimum buffering requirements. The sender tries to send its valid
flits to the link as long as the buffer placed at the receivers side has
available slots to host the incoming word. The buffer at the receiver
should behave as a FIFO queue even if it has at least on position.

Credit-based flow control gives to the sender all the necessary knowl-
edge to start, stop, and resume the transmission. In credit-based flow
control, the sender explicitly keeps track of the available buffer slots of
the receiver. The number of available slots is called credits and they are
stored at the sender side in a credit counter. When the number of cred-
its is larger than zero then the sender is allowed to send a new word
consuming one available credit. At each new transmission the credit
counter is decremented by one reflecting that one less buffer slot at the
receive side is now available. When one flit is consumed at the receive
side, leaving the input buffer of the receiver, the sender is notified via
the credit update signal to increase the available credit count. No word
can be dropped or lost since each word reaches the receiver after having
first consumed the credit associated with a free buffer position.

An example of the operation of the credit-based flow control is shown in
Figure 2.6. At the beginning the available credits of the sender are reset
to 3 meaning that the sender can utilize at most 3 slots of the receivers
buffer. When the number of available credits is larger than 0 the sender
sends out a new word. Whenever the sink of the receiver consumes one
new word, the receiver sends a credit update that reaches the sender
one cycle later and it increases the credit counter. The credit updates,
although arrive with cycle delay, they are immediately consumed in the
same cycle. This immediate credit reuse is clearly shown in the clock
cycles where the available credits are denoted as 0*. In those clock cycles,
the credit counter that was originally equal to 0 stays at 0, since, it is

19

2. Background and Related Work

credits
counter

data

valid
ready update

sender receiver

update

A B C

Source Sink

D0

D1

Snd RcvA B C

D0

D1

D2

D3

D2

D3

D4

0

1

2

3

Cycle

4

5

6

7

8

9

10

11

3

2

1

0*

A

A

A B

D0

D1

D2

D3

D4 C

0 1 2 3 4 5 6 7 8

updates -1 -1

A

D5 A

clock cycles

#credits 3 2 1 0 0 0 0 0 0

CB

B C

-1 +-1

9 10 11

0 1

+1 +1

Q Q

Q Q C

Q Q

A

C

B

B

Q

Q

+-1

0

+-1

B

+-1

AD6

Q C

B C

Figure 26: An example of data transfers on a link between a sender and a receiver governed
by credit-based flow control. The figure includes the organization of the sender and receiver
pair and the flow of information in time and space.

simultaneously incremented due to credit update and decremented due
to the transmission of a new word. When the words are not drained at

20

2.3. Router Microarchitecture

the sink they are buffered at the receiver. No word can be dropped or
lost since each word reaches the receiver after having first consumed the
credit associated with a free buffer position.

The throughput of transmission on each link of the network is closely
related to the number of credits used by the sender and the number of
clock cycles that pass from the time a credit update leaves the sender
until the first new word that consumes this returned credit reaches the
input buffer of the receiver.

In the general case that (a) the credit update signal reaches the credit
counter at the sender after Lb cycles from its generation and (b) the
data in the forward direction reach the receiver L f cycles after they are
produced at the sender, the minimum number of buffers needed at the
receiver under credit-based flow control to guarantee lossless operation
and 100% throughput is L f + Lb. Note that credit consumption is done
once the data forwards the data to the link without any additional delay,
i.e., the latency of the valid signal that consumes the credit is always
zero.

2.3 Router Microarchitecture
The NoC router needs to performs a series of per-input and per-output
tasks before being able to send incoming traffic (or that stored in the in-
put buffers) at the output ports. Each packet should first complete rout-
ing computation (RC) (using its head flit) that informs the packet which
output to follow at each router, in order to get closer to its destination.
The result of RC is written in the outPort register (one per input) and
used in the same cycle by the head flit of the packet. Then, each packet
should fight for gaining access to the output via switch allocation/arbi-
tration (SA) and move to the appropriate output via the multiplexers of
the crossbar (Switch Traversal ST). Eventually, the packet will reach the
next router, after leaving the output buffer and crossing the link (Link
Traversal LT). We assume that the input/output links of the router are
independently flow controlled, following the credit-based flow control.

A block diagram of NoC router is shown in Figure 2.7. The output
buffers of the router can be either simple pipeline registers or nor-

21

2. Background and Related Work

RC

STInput Buffer

input
controller SA

Output
Buffer

Output
Status

Pipeline
Register

output buffer
choices

Credit
Counter

Credit
Counter

FIFO queue

update

Figure 27: An abstract organization of the NoC router.

mal flow-controlled buffers (FIFO queues). In the first case, the credit
counter refers to the available buffer slots of the buffer at the input of
the next router, while in the second case the credit counter mirrors the
available buffers of the local output buffer. In this design, we adopt the
first design option and assume that the output of the router consists of
a simple pipeline register for the signals in the forward (valid, data) and
in the backward direction (credit update).

After the calculation of its destination output port through RC, a packet
must generate a proper request to SA, according to the current states of
the input. Each input wants to send a packet that contains one head flit,
a number of body flits and a tail flit that declares the end of the packet.
Since each flit should travel on the shared link as an atomic entity the
link should be allocated to the packet as a whole: The head flit will
arbitrate with the head flits of the other inputs and once it wins it will
lock the access to the output. This lock will be released only by the tail
flit of the packet.

Each input before transferring an active request to the arbiter needs also
to guarantee that there is at least one free buffer slot at the sink by
checking the credit counter at the selected output.

The grants of the output arbiters of SA play a triple role:

• They drive the select signals of the output multiplexer that will
switch to the output the flit of the selected input.

22

2.3. Router Microarchitecture

• They are used per-input to set the winning input. In the next cy-
cles, the body and the tail flits do not need to qualify their requests
again.

• They drive the pop signals of the winning input buffers causing a
dequeue operation to the corresponding input buffer. The inputs
that did not win will see not see a pop and thus they will keep
their data in their buffer. At the same time, the input buffer that
dequeues a flit informs the previous router that a buffer slot is
emptied, using the credit update mechanism.

At the output side, if a flit has won in per-output arbitration (SA) and is
about to be stored at the output buffer, it must consume a credit (Credit
Consume CC) that is, decrease the credit counters value to reflect the
current free slot availability of the output buffer (placed at the input of
the next router). If the granted flit was a head or a tail flit, the output is
also locked for the whole duration of the packet (State Update SU).

Updating the output state and consuming the necessary credits is nor-
mally triggered once a flit traverses the output multiplexer, and is about
to be written to the output pipeline register. Although this might seem
a safe and reasonable choice it introduces some non-negligible delay
overhead. The problem can be completely eliminated by making an
important observation: both CC and SU can be executed without the
need of knowing specifically which input allocates the output port or
consumes an output credit. Simply knowing that some input wins in
arbitration or sends a flit forward, suffices. Therefore, since the SA re-
sult is not required, those operations can occur in parallel to SA. For SU,
this translates to checking whether any request from a head or a tail flit
exists, while CC decrements the output credit counter if the correspond-
ing output receives at least one request.

An example of the operation of the described NoC router can be seen
in Figure 2.8. The execution diagram refers to the behavior of a single
input that receives a consecutive traffic of incoming packets consisting
of 3 flits (one head, one body and one tail flit). In parallel, the rest inputs
follow a similar execution assuming that their requests and data move to
a different output. A certain output can host the packet (on a flit-by-flit
basis) of only one input at a time. In cycle 0, a head flit is written at the

23

2. Background and Related Work

SA DQ ST
su

BW RC

0 1 2 3 4 5

H

B

T

H

cc

LT BWLT

BWLT SA DQ ST
cc

SA DQ ST
su

BW RC
cc

LT BWLT

BWLT

SA DQ ST
su

BW RC
cc

LT BWLT

Figure 28: The tasks that need to be performed for the flits of a packet arriving at an input
of the router.

input buffer (Buffer Write BW), after crossing the link (Link Traversal
LT). The flit immediately appears at the frontmost position of the input
buffer in cycle 1, and is able to execute all necessary operations within
a single cycle: (a) the flits destination field feeds the RC and the request
generation logic; (b) supposing that the output is available, the flit per-
forms SA, while in parallel it consumes a credit (CC) and updates (SU)
the output state; finally, (c) the grant produced by SA is used to dequeue
(DQ) the flit from the input buffer, in order to traverse the crossbar (ST).
As the head flit moves forward to the output pipeline register, a body
flit is written at the input buffer. The output buffer has enough credits
available, thus allowing the newly arrived body flit to generate a request
to SA. Being the only active request (the requests of all other inputs for
the selected output are nullified), the body flit is granted to move for-
ward, after consuming a credit. In the same cycle, the head flit is moving
to the next router. In cycle 3, the tail flit follows the same procedure, per-
forming SU as well, in order to release the allocated port, while the next
packets head flit arrives. In cycle 4, all previously allocated resources
are already free and the following packet is able to generate a request
and participate in arbitration, whatever its destined output port might
be. Observing the rate of incoming and outgoing flits of this input, one
would notice that a flit only requires a single cycle to exit the router,
and no extra cycles are added in between packets. The only conditions
under which a flit may be stalled is (a) if all the output buffers slots are
full, or (b) a head flit loses in arbitration (in this case the output port is
still utilized, but by a different input).

The support of virtual channels increases the complexity of the router.
The input buffers are separated to independent queues (one per VC) and
incoming packets are placed to the corresponding buffer depending on

24

2.3. Router Microarchitecture

the VC they belong to. After each packet independently need to find its
way towards the requested output after allocating a virtual channel at
the next router and time slot of the output port. A block diagram of a
VC-based router with the processing flow of the incoming flits is shown
in Figure 2.9.

Out#1In#1

ST
.
.
.

Input VC
State

credits

Routing
Logic

Buffer
Input VCs

Output VC
State

credits

Switch
Allocator

VC
Allocator

.

.

.

Figure 29: A block diagram of a NoC router which supports VCs. Also, the processing steps
for the incoming flits at the router are presented.

New flits arrived at the inputs are stored into the input VC buffers of
the router(BW). In the following clock cycles, they must find the correct
output port and forward to the next router. A head flit, the first flit of
new packet, must find its output destination port via a routing com-
putation (RC) unit. Also, it must choose a VC at the input of the next
router, an output VC. A VC allocator (VA) is used to match input VCs
to output VCs. Based on the routing algorithm, there are different im-
plementation of the VA. There are routing algorithms which allow the
change of a VC while a packet traverses from a router to another (for
example XY routing), while other may place specific restrictions on the
use of VCs. The VC allocator must enforce all these rules during the
VC allocation. When a flit has its own VC, it can arbitrate to use their
output port. This step of arbitration is called Switch Allocation (SA) and

25

2. Background and Related Work

it is organized in two arbitration steps, a local step (SA1) and a global
step (SA2). When a flit wins and has an output port, it will move to
the crossbar (Switch Traversal ST) and then it will traverse the link (Link
Traversal LT) to move to the next router.

2.4 Low-Power NoC Design
Reducing power consumption is a key design criterion for modern cir-
cuit designs, to extend battery lifetime, reduce packaging and cooling
costs, and permit higher device performance. Modern semiconductor
technologies that include FinFET transistors with increased input ca-
pacitances, significant wire RC parasitics, and 3D integrated structures
for increased functionality on chip, make low power design a hard-to-
achieve design goal. For maximum efficiency, even if low-power de-
sign starts at the architectural level, the low-power design techniques
continue through the physical design implementation flow that creates,
optimizes, and verifies the physical layout so that it meets the power
budget along with timing, performance, and area goals.

Even until very recently, when product performance or power consump-
tion suffered, designers conveniently migrated to the next generation
manufacturing process to make chips with smaller, faster and more effi-
cient transistors. Such approaches are longer viable in the post-Moore’s
law era where efficiency in power under strict performance require-
ments is the ultimate goal for any design.

Devices consume most of their power when they are operating. There
are two major sources for the active power consumption: switching (dy-
namic) power and short-circuit power. Devices consume power also
when they remain idle mostly due to transistor leakage currents. Nor-
mally, the active power consumption, especially switching power, is
dominant one even if in areas of the chip with high inactivity leakage
power can become a top concern.

NoC power consumption contributes around 10-15% of total chip power
consumption. The power in a NoC is roughly spent in driving the long
wires of the NoC, for buffering in-flight data, including also the required
clock tree power for this operation, and for switching them from source

26

2.4. Low-Power NoC Design

to destination. Several research efforts have tried to tackle in the past the
design of low-power NoCs including architectural and circuit-level tech-
niques and covering both dynamic and static power components. In the
following paragraphs we present a detailed survey of most promising
low-power alternatives targeting the design of scalable NoCs.

2.4.1 Power-aware Microarchitectures
Early works on NoC design explored the power efficiency of various
NoC topologies and identified the power cost of NoC buffering, wire
traversal and switching. In [2] detailed area and energy models for on-
chip interconnection networks were developed and the tradeoffs in the
design of efficient networks for tiled chip multiprocessors were iden-
tified for the first time. Using these detailed models, various aspects
of the network architecture including topology, channel width, routing
strategy, and buffer size are explored and their impact on performance,
area and energy efficiency is quantified. The main first promising re-
sult identifies the use of multiple on-chip networks as a means to ef-
ficiently increase bandwidth and path diversity substantially without
adversely affecting area or energy efficiency. Additionally, concentrated
NoC topologies have been shown as a viable alternative for large-scale
NoC designs.

The improvement of NoC router microarchitecture has been the focus of
many research efforts with the goal to increase the energy efficiency of
the designs without compromising performance (latency and through-
out). The relation between performance and power consumption of vari-
ous NoC and router alternatives have been initially compared and quan-
tified in [4]. Speculative NoC routers that reduce the pipeline depth
achieve the best performance.

Adopting the pipeline depth for optimal power-performance NoC be-
haviour has been explored in [86] and [100]. The router can adjust
its pipeline depth (i.e., communication latency) and supply voltage level
in response to the applied workload. Unlike dynamic voltage and fre-
quency scaling (DVFS) routers, the operating frequency is the same for
all routers throughout the CMP, which means that there is no need to
synchronize neighboring routers working at different frequencies. The

27

2. Background and Related Work

router can select between two supply voltage levels and pipeline modes.

In [112], a token flow control, which allows bypassing of flit buffering
in the routers, is proposed targeting to reduce the power consumption
in both the control path (buffers) and the datapath (crossbar and links).

Datapath switching power has been tackled also in [141]. In this paper, a
new power aware optimizations in the circuit and the micro-architecture
of the routers is proposed, focusing on the design of a write-through
buffer in the inputs of a router, which removes buffer read energy when
bypassing can be done. Also, they used segmented crossbars, a simpli-
fied application of segmented busses.

Similarly, in [26] the router operation is splitted into two independent
modules and each module handles traffic in one dimension (X- or Y-
dimension). This allows simpler and smaller units for the arbiters and
the crossbars, which are more power efficient.

In the same context, in [69] the cost of on-chip networks is reduced
by partitioning the routers crossbar, and prioritizing packets in flight to
simplify arbitration, and reducing the amount of buffers. A dimension-
sliced router microarchitecture was used to minimize complexity, while
intermediate buffers to decouple the x-dimension and the y-dimension
of the dimension-sliced router are introduced. The amount of buffers
where reduced to the absolute minimum thus negatively affecting per-
formance. However, the use of prioritized allocation, favoring packets
in flight, minimizes the loss of throughput.

Reducing the power contribution of buffers can be done by relying on
bufferless flow control. Bufferless NoCs eliminate in-network buffers,
such that flits contending for the same ports are either deflected towards
other ports, or dropped awaiting retransmission by the upper layer pro-
tocol.

In [96] a novel buffer-less routing was used to eliminate the need for
buffers for routing or flow-control in the network. In [42] a new buffer-
less router micro-architecture was proposed which supports a dropping
mechanism to deal with routing conflicts. These techniques can reduce
power consumption if the number of misroutes or dropped packets is
small. Otherwise, the power consumption of the links is increased.

28

2.4. Low-Power NoC Design

Also, they are fundamentally throughput limited as the congestion is
increased quickly.

The work of [30] combines SMART flow control and bypass switch-
ing [14] with bufferless operation. SMART eliminates the latency de-
pendence on hop count by using clock-less/asynchronous repeaters in
routers’ crossbar and associated flow to bypass multiple routers in the
same cycle. Every router prioritizes requests using a fixed priority
scheme based on the flit’s distance from the source.

One additional effective way to reduce NoC power consumption is to
reduce the amount of data sent over the network. To that extent, re-
cent work has focused on compression at the cache and network levels
[27, 62], as an effective power-reduction technique. Focusing on traffic
reduction, the work in [67] seeks to reduce the amount of data trans-
mitted through identification of useless words by transmitting only the
flits that contain words predicted useful using a novel spatial locality
predictor. To further lower NoC energy additional microarchitectural
mechanisms are proposed that inhibit datapath switching activity for
unused words in individual flits.

Reduced switching activity can be achieved via traditional clock gating
of NoC components thus saving both datapath and clock tree power. In
[97], clock gating optimisations are applied at two levels: (a) automated
clock gating within router and (b) router Level Clock Gating exploit-
ing the opportunities to isolates routers clock completely. Similarly, the
work in [109] explored how the physical design flow reacts in NoCs
buffer clock gating. Switching off unused components as enabled by
clock gating can be enhanced at the network level where network links
are turned off and switched back on depending on network utilization
in a distributed fashion [133].

2.4.2 Wire Engineering
While the downscaling of device sizes led to continuous improvement in
the properties of transistors, it caused significant degradation in proper-
ties of the metal wires that are used as system interconnects. Wires have
become limiters of speed, power dissipation, and reliability because of
their growing resistance and capacitance in scaled fabrication processes.

29

2. Background and Related Work

Due to nonuniform scaling of wire thickness and wire width, net-to-net
cross- capacitance between adjacent wires constitutes the largest part
of total interconnect capacitance. Line-to-line cross-capacitances within
the same metal layer are important determinants of speed and power so
that mutual effects between parallel adjacent wires must be considered
during the physical design of the circuit layout.

Consequently, the spacing distance between wires on the chip has be-
come a highly important resource, which deserves careful allocation and
optimization [94]. The problem cannot be tackled alone but it should
be combined wire sizing and bus repeater insertion for long links.

The optimization of wire placement in the physical layout reduces the
capacitance seen by the drivers of the wires. The coupling capacitance
shared of the total capacitance can be effectively reduced by appropri-
ate encoding of the data transmitted on the wires. Encoding modifies
the switching patterns of a group of wires in such a manner such that
crosstalk coupling effect is reduced. A complete survey of bus encoding
techniques can be found in [107].

Redundant bus coding has been used as an effective technique for trad-
ing off energy against reliability. Voltage on wires is reduced in order to
save power. At the same time this effect decreases the reliability of wire
transfers (noise can lead to transmission errors). The use of coding in-
creases the hardware overhead but leads to safer transmissions at lower
voltages (errors are corrected at the receiver) thus possibly increasing
energy efficiency. The work of [6] explores this design tradeoff and
evaluates the impact of two error recovery schemes when used for bus
energy efficiency: correction at the receiver stage versus retransmission
of corrupted data.

Low-swing signaling is now one well-known low-power design tech-
nique in both on- chip and off-chip interface circuits. In on-chip do-
main, the low-swing signaling will be considered as a natural choice
for future on-chip communication fabrics since the wire performance
benefit from CMOS process scaling does not keep up with the gate
performance benefit. The low-swing technique is based on the depen-
dence of dynamic energy on swing voltage. Reducing the voltage swing
across data path leads to reduced charging and discharging of capaci-

30

2.4. Low-Power NoC Design

tance on the wires thereby making on-chip communication fabrics more
energy-efficient and faster. Particularly, under the circumstance where
it is hardly possible to reduce length of wires and their fanout by us-
ing advanced processes or architectures, the low-swing signaling is the
best design technique toward getting energy efficient on-chip networks
[106, 152].

Another common technique is the charge sharing based low-swing drivers.
The main idea is to limit power supply, but they need particular data
patterns for reliable operation. The work in [45] uses a data-dependent
logic swing bus, while in [74], a charge recycling technique is intro-
duced. The half of the charge stored in the load capacitances is reused
in every signal transition. The need to reduce supply voltage is removed
by the use of cut-off drivers as proposed in [38].

2.4.3 Dynamic Voltage Frequency Scaling
Dynamic voltage and frequency scaling (DVFS) is a technique that takes
advantage of the quadratic relationship between supply voltage and cir-
cuit power consumption to improve overall energy usage, making it a
candidate for low-power VLSI design. There are tradeoffs to be made.
Because circuits operating at a lower voltage will generally run more
slowly, frequency of operation often needs to be scaled as the voltage
reduces.

In order to apply dynamic voltage scaling, designers need to analyze
how the system is managed dynamically and then find good control
policies, which could be predictive, adaptive or a combination of both.
The IC needs to be divided into domains that can be supplied with dif-
ferent clock signals and voltage levels. Control software and hardware
are used to ensure each domain gets the right combination of voltage
and clock signals. As with voltage islands, level shifters and synchro-
nizers are needed to ensure that logic levels are adjusted correctly as the
signals cross from one domain to another.

The work of [129] motivated the use of dynamic voltage scaling for
links, where the frequency and voltage of links are dynamically adjusted
to minimize power consumption. A history-based DVS policy that uses
past network utilization to predict future traffic and tune link frequency

31

2. Background and Related Work

(and voltage) dynamically was proposed to minimize network power
consumption while maintaining high performance.

Recent DVFS techniques for on-chip networks focuses on using some
static network parameters like average queue utilization or average la-
tency of memory requests replies, etc. to decide the new voltage-frequency
(V-F) states of the routers. Typically, there is a DVFS controller, which is
responsible for the following tasks: target a suitable network parameter
and keep track of its values, based on previous states and target values
compute a feedback and, finally, update V-F state.

For example, in [13] and [17] the main metric to tune the voltage and
the frequency is the throughput of the network. In [13], a rate-based
policy scales down voltage and frequency of the network to the min-
imum value that allows to sustain the injection rate without reaching
saturation. Also, a target delay is set and a proportional-integral control
loop is implemented. It measures the average delay and makes sure that
the target is not exceeded

In [17] they proposed a central controller which tries to minimize the
energy dissipation of both NoC and last-level caches (LLC) without de-
grade the performance of the whole chip in terms of total application
time and the throughput. This work focuses on a realistic scenario where
the entire NoC and LLC belong to a single V/F domain. As such, the
interfacing overhead can be largely prevented and there is a coherent
policy covering the whole of these shared resources. The throughput
driven controller can use a dynamic reference point, while a new met-
ric that bridges the gap between the NoC/LLC V/F level and the chip
energy performance trade-off was introduced.

Other works, like in [8] and [92], target on the buffer utilization of
the routers. The main goal of this idea is to determine the necessary
operating frequencies such that the NoC queues reach and remain at
their target reference values for bursty workloads. The runtime perfor-
mance of application workloads can be used for the Voltage-Frequency
assignment.

The work of [43] observes coherence messages to decide the state of
the voltage and the frequency. Coherence messages usually follow more
regular and predictable patterns than aggregate bandwidth in the net-

32

2.4. Low-Power NoC Design

work, so they can be used to predict more accurately upcoming NoC
bandwidth requirements. The traffic predictions are then used to in-
fer aggregate bandwidth demands in the network that enable informed
DVFS decisions. Similarly, in [Malleable NoC: Dark Silicon Inspired
Adaptable] the L1 and L2 cache misses are taken into account in order
to determine the values of voltage and frequency per router.

[148] presents a voting-based approach where the threads utilizing the
NoC seek to influence the DVFS decisions independently by voting for a
preferred V/F level that best suits their own performance requirements
based on their runtime profiled message generation rate and data shar-
ing characteristics. Then, the vote is carried in the packet header and
spread to the routers on the packet route. A region DVFS controller
takes the final DVFS decision democratically according the majority of
collected votes from all active threads. To achieve scalable V/F adjust-
ment, each region works independently, and the voting-based V/F tun-
ing forms a distributed decision making process.

In [149] the per-router voltage/frequency tuning is done using the
memory-access density information. Also, a priority-based switch al-
location is performed to speed up critical packets and avoid starvation
using the memory-criticality information.

2.4.4 Power Gating
Although the equation for switching power in CMOS circuits P = kC f V2

suggests that reducing voltage as far as possible will minimize energy
pointing to operation close to or below the threshold voltage the effect
of leakage needs to be taken into account. In nanometer processes, the
effects of leakage are severe and can easily exceed the benefits of cutting
switching power through voltage and frequency reductions resulting
in higher energy overall even though the instantaneous power demand
will generally be lower.

The effects of leakage have made DVFS less attractive as a power-mana-
gement and energy-reduction strategy in leading-edge processes than
for older technologies that can offer better leakage control. A common
alternative strategy is to run the circuit at full speed but use power
gating to cut the supply when it has completed.

33

2. Background and Related Work

In mane applications, there are certain blocks of the chip which do not
operate during different working modes like sleep or stand-by modes
and only a part of the device is required to function. In these case,
designers should be able to power off non-functional blocks so that they
can reduce the power consumption of the unused blocks. Thus, the goal
of power gating is to minimize leakage power by temporarily cutting
power off to selective blocks that are not required in that mode.

At first, in [132] proposed a power gating mechanism, which checks the
interconnect link utilization. Based on that information, it later decides
to power gate components of the NoC such as ports of routers and links
in response to bursts in network traffic. Although it shows promising
results, it has some drawbacks. First, this approach reduces the perfor-
mance remarkably in cases with big wake-up latency or unpredictable
traffic. Also, it misses opportunities for power gating idle router which
are attached to sleep cores.

The work of [16], implements a power-gating bypass mechanism that
decouples the nodes ability for sending, receiving and forwarding pack-
ets from the powered-on/off status of the associated router. To ensure
this, they provide a decoupling bypass path that connect the inject and
the eject links for a bypass channel to the router. This idea reduces the
number of states transition and increases the number of cycles a router
that can remain idle. Also, it removes any disconnection problems be-
tween routers and it hides the wake-up latency from the critical path
when a router moves from sleep state to normal working state. How-
ever, a bypass ring is not scalable to big networks.

PowerPunch [15] introduced a performance-aware, non-blocking power-
gating mechanism which turn on routers from switch-off state along
the path of packet in advance thereby preventing packet from suffering
router wakeup latency or detour latency. The main idea is to send power
control signal before the packet to “punch through” any blocked routers
in power-gated mode.

In [120], the main idea is to power gate a some of routers associated with
sleeping cores by proactively aggregating traffic to the active routers
such that it conserves power, does not impact function, and minimizes
the impact on performance. At the same time, the proposed method

34

2.4. Low-Power NoC Design

makes sure that the connectivity between the cores of the network is
maintained, and limits the average interconnect latency impact of packet
detouring around inactive routers. For that reason, a centralized man-
ager is responsible for configuring, monitoring and re-configuring the
NoC.

Catnap [28] proposed a multiple-network design with synergistic power-
gating policies. The main idea is that a multiple-network design is more
amenable to power gating, as its subnetworks (subnets) can be power
gated without compromising the connectivity of the network. However,
it is only applicable to CMPs with high-bandwidth requirements

Finally, in [104], a power-aware routing and topology reconfiguration
of the NoC is proposed. The goal is to minimize detours while selected
components in routers are power-gated. The routing reconfiguration
uses a distributed mechanism and guarantees that deadlock-free routes
are available at all times. At runtime, its power-gating decisions should
follow the applications communication patterns. This feedback-based
mechanism is slow and reconfiguration takes place only on per epoch
basis. Power-gating components inside the router in a fine grained fash-
ion requires additional circuitry.

35

Chapter 3

ElastiStore: Low-Cost
Virtual-Channel Buffers

The NoC needs to be both scalable, in terms of network functional-
ity and performance, and flexible, in terms of physical implementation.
This requirement motivates us to unify a VC-based architecture, which
favors NoC scalability, with Elastic Buffering (EB), which eases physical
implementation and promises area and power reduction.

Owing to its elastic operation – based on simple ready/valid hand-
shakes – elastic buffering is a primitive and simplified form of NoC
buffering, which can be easily integrated in a plug-and-play manner at
the inputs and outputs of the routers (or inside them) [89, 12, 116], as
well as on the network links to act as a buffered repeater [20]. Elastic
buffering assumes only one form of handshake on each network chan-
nel. The handshake cannot distinguish between different flows, thus
making the elastic buffering operation serial in nature. This feature pre-
vents the interleaving of packets and the isolation of traffic flows, while
it complicates deadlock prevention. Due to this limitation, direct sup-
port for VCs is abandoned and replaced by multiple physical networks,
or implemented via complex and non-scalable hybrid EB/VC buffering
architectures [90, 39, 72]. However, the latter techniques remove the
basic property of the elastic buffers to act as stitching elements that can
be placed seamlessly anywhere in the NoC.

In this work, we aim to address the aforementioned deficiencies of
EB-based designs, by generalizing the operation of elastic buffering to

37

3. ElastiStore: Low-Cost Virtual-Channel Buffers

support multiple VCs, while at the same time retaining all scalability
and composability attributes. The proposed architecture, which we call
ElastiStore, minimizes the number of buffers per channel close to the
absolute minimum of one buffer slot per VC, without sacrificing perfor-
mance and without introducing any dependencies between VCs, thus
ensuring deadlock-free operation. The operation of ElastiStore is gener-
alized to support arbitrary round-trip latencies.

The elastic operation and minimum buffering are maintained, while the
extra buffering required due to the increased round-trip latency is ab-
sorbed via a low-cost shared (across VCs) buffer structure inside Elasti-
Store.

The scalability of the proposed scheme is demonstrated by the integra-
tion of ElastiStore in both single-cycle and pipelined NoC routers that
offer the same performance as baseline VC-based routers, albeit at a
significantly lower area cost. The experimental results – based on both
synthetic traffic patterns and real application workloads running in a
full-system simulation framework – validate the effectiveness of the pro-
posed architecture. Additionally, hardware implementation results cor-
roborate our claims pertaining to ElastiStore’s efficiency. Overall, our
evaluation demonstrates that ElastiStore enables the design of extremely
low-cost and highly scalable VC-based NoC architectures that provide
equal networking performance as much more expensive (in terms of
area/power) state-of-the-art VC-based implementations. ElastiStore is
envisioned as an archetypical primitive for future, extremely low-cost
NoC router implementations, where the performance and functionality
enhancements provided by VCs cannot be sacrificed.

3.1 Elastic Channels and Buffers
A single-lane elastic channel carries – in parallel to the data wires –
two extra control wires (valid and ready), which are required to imple-
ment the elastic protocol, as shown in Figure 3.1(a). The EBs implement
the elastic protocol by replacing any simple data connection with an
elastic channel. When an EB can accept an input, it asserts its ready
signal upstream; when it has an available output, it asserts the valid
signal downstream. When two adjacent EBs both see that the valid and

38

3.1. Elastic Channels and Buffers

ready signals are both true, they independently know the transfer has
occurred, without negotiation or acknowledgement. An example of this
handshake is shown in Figure 3.1(b).

When the output of a chain of EBs stalls, the stall can only propagate
back one stage per cycle. To handle this, all EBs can hold two words,
one for the stalled output, and one caught when necessary from the
previous stage. Such an implementation is shown in Figure 3.1(c). By
controlling the clock phases accordingly, as shown in [22], the 2-slot EB
can also be designed using 2 latches in series, instead of two flip-flops,
similar to Figure 3.1(d). Following the same methodology, any EB ar-
chitecture derived for edge-triggered flip-flops can also be implemented
with latches.

valid

ready

data

EB EB

clock

valid

ready

flitA flitB flitCdata

(a) Elastic channel (b) Elastic data flow

0

1

in

enen

en

out

EB control
vin vout

rout rin
EAUX

Auxiliary

Main

EMAINsel
in

en

out

latch EB control
vin vout

rout rin

master

latch

D Q

en

slave

latch

D Q

clock

(c)Flip-flop-based EB (d) Latch-based EB

Figure 31: The fundamentals of the elastic buffering protocol. The protocol requires two
control wires (valid and ready), which typically run in parallel to the data wires. The data and
control wires together comprise a single-lane elastic channel. Any EB architecture derived
for edge-triggered flip-flops can also be implemented with latches.

The same handshake signals can be used for deriving an inelastic flow-
control policy. When elasticity is removed and the end of a pipeline of
flow-controlled registers is stalled, data movement stops concurrently
for all stages of the pipeline; data flow is simply frozen, and, inevitably,
some pipeline stages remain empty. On the contrary, an elastic flow-
control policy allows all empty stages to be filled with incoming data.

39

3. ElastiStore: Low-Cost Virtual-Channel Buffers

In NoCs, the flits of the packet need to flow as close as possible to
their final destination before being stalled for any reason. Therefore, the
implementation of any flow-control policy in NoCs should be inherently
elastic.

3.2 VC Flow Control and Buffering
Baseline elastic flow control is serial in nature (FIFO-like). Thus, it is
not possible to support different isolated flows analogous to a multilane
street, or even to allow the interleaving of flits from different lanes on
the same elastic channel. This can only be supported by employing
individual handshaking interfaces for each supported VC, so that the
various VC traffic flows are inherently logically separated and easily
guided to their respective parallel buffer slots.

data

valid
ready

valid[0]
valid[1]
valid[2]

ready[0]
ready[1]
ready[2]

sender receiver

Figure 32: Virtual channels require the addition of separate buffers for each VC at the
receivers side and at the same time call for enhancements to the flow control signaling to
accommodate the multiple and independent flows travelling in each VC.

To divide a physical channel into V virtual channels, the input queue at
the receiver needs to be separated into as many independent queues as
the number of virtual channels. These virtual channels maintain control
information that is computed only once per packet. To support the
multiple independent queues link-level flow control is also augmented
and includes separate information per virtual channel.

Ready/valid handshake on each network channel cannot distinguish
between different flows. This feature prevents the interleaving of pack-
ets and the isolation of traffic flows, while it complicates deadlock pre-
vention. A channel that supports VCs consists of a set of data wires
that transfer one flit per clock cycle, and as many pairs of control wires

40

3.2. VC Flow Control and Buffering

valid(i)/ready(i) as the number of VCs. Fig. 3.2 shows an example of
a 3-VC elastic channel. Although multiple VCs may be active at the
sender, flits from only one VC can be sent per clock cycle; only one
valid(i) signal is asserted per cycle. The selection of the flit that will
traverse the link requires some form or arbitration that will select one
VC from those that hold valid flits. At the same time, the receiver may
be ready to accept flits that can potentially belong to any VC. Therefore,
there is no limitation on how many ready(j) signals can be asserted per
cycle.

The basic property of VC-based flow control is the interleaving of flits of
different packets. In each cycle, a flit from a different VC can be selected
and appear on the link. The flit once it arrives at the receiver is placed
on the appropriate VC buffer. Since the buffering resources of each VC
at the receivers side are completely separated, interleaving of flits of
different packets does not create any problems, assuming that the VC-
based flow control mechanism does not involve any dependencies across
VC, e.g., if the buffer of a certain VC is full to stop the transmission of
flits from another VC.

In the simplest form of single-cycle links the valid and the backpres-
sure information needs one cycle to propagate in the forward and in
the backward direction. Therefore, as each VC needs 2 slots to enable
lossless operation and 100% throughput.

VCbuf#0

VCbuf#1

cycles

A0

A3B2

A1

B3

B0

A0

A1

B1
B1

A2

B1

B3

X

B2B3

A5

B3

A4

VC B stalls VC B released

0 1 2 3 4 5 6 7 8

B0

A1

B1

A1

A2

A3

B3

B2
B2 B2

B4

B4

B4

A5

B1

A2

B0

B1 B2

A2

A2

B2

A4

B4

B5

Input output

VCbuf#0 VCBuf#1

Input

Output

A3

A3

B3

Link

link

A6

B1

A4 A3

A3

A4

B2 A4

A5 A4

B5

Figure 33: Flit flow on a channel between two primitive VC buffers that employ a 2-slot EB
for each VC.

Fig. 3.3 depicts a running example of a VC-based pipeline using a 2-slot

41

3. ElastiStore: Low-Cost Virtual-Channel Buffers

queue per VC. The two active VCs each receive a throughput of 50%
and each VC uses only one buffer out of the two available per VC. The
second buffer is only used when a VC stalls. This uniform utilization
of the channel among different VCs leads to high buffer underutiliza-
tion. The buffer underutilization gets worse when the number of VCs
increase. In the case of V active VCs, although the physical channel will
be fully utilized, each VC will receive a throughput of 1/V and use only
one of the two available buffer slots since it is accessed once every V
cycles. Only under extreme congestion will one see the majority of the
second buffers of each VC occupied. However, even under this condi-
tion, a single active VC is allowed to stop and resume transmission at a
full rate independently from the rest VCs. This feature is indeed useful
in the case of traffic originating only from a single VC, where any ex-
tra cycles spent per link will severely increase the overall latency of the
packet. However, in the case of multiple active VCs, whereby each one
receives only a portion of the overall throughput (1/M in the case of M
active VCs), allocating more than 1 buffer slot per VC is an overkill.

3.3 VC Buffering on Pipelined Links
When the delay of the link exceeds the preferred clock cycle, one needs
to segment the link into smaller parts by inserting an appropriate num-
ber of pipeline stages. In the case of single-lane channels, the role of
the pipeline stages is covered by EBs, which isolate the timing paths (all
output signals – data, valid, and ready – are first registered before be-
ing propagated in the forward or in the backward direction), while still
maintaining link-level flow control.

In the case of VC-based elastic channels, we can rely on simple registers
for pipelining the data and the ready/valid handshakes signals on the
link, as shown in Figure 3.4. In this case, the flits cannot stop in the
middle of the link, since the pipeline registers do not employ any flow
control. Many words may be in-flight, since it takes L f cycles for the
signals to propagate in the forward direction and Lb cycles in the back-
ward direction. Therefore, the buffers at the receiver need to be sized
appropriately to guarantee lossless and full throughput operation, i.e.,
more buffers per VC are needed than the 2 slots per VC allocated in the

42

3.3. VC Buffering on Pipelined Links

case of a single-cycle channel.

data

valid

ready

update

receiver

Lb registers

Lf registers

...

...

...

control

VC buffers

sender

Figure 34: Abstract model of a pipelined link with multiple VCs and independent ready/valid
handshake signals per VC.

First of all, assume that only one VC, i.e., the ith one, is active for a
period of time and the remaining VCs do not send or receive any data.
When the buffer of the ith VC is empty, it asserts the ready(i) signal.
The sender will observe that ready(i) is asserted after Lb cycles and im-
mediately starts to send new data to that VC. The first flit will arrive at
the receiver after L f + Lb cycles. This is the first time that the receiver
can react by possibly de-asserting the ready(i) signal. If this is done, i.e.,
ready(i)=0, then under the worst-case assumption, the receiver should
be able to accept the L f − 1 flits that are already on the link, plus the Lb
flits that may arrive in the next cycles (the sender will be notified to stop
with a delay of Lb cycles). Thus, when the ith VC stalls, it should have
at least L f + Lb empty buffers to ensure lossless operation. Actually, the
minimum number of buffers for the ith VC reduces to L f + Lb − 1, if we
assume that the sender stops transmission in the same cycle it observes
that ready(i)=0.

Thus, a channel with V VCs and a round-trip time of L f + Lb needs at
least V(L f + Lb − 1) slots. When many VCs are active on the channel,
their flits would be interleaved and the probability that all L f + Lb − 1
flits belong to the same VC is small. However, the worst-case condition
calls for providing as much buffer space to each VC as needed to prevent
the dropping of any flit, independent of the traffic conditions on the
remaning VCs.

Unfortunately, giving the minimum number of buffers to each VC has
some throughput limitations. Assume that the ith VC has occupied all
its buffer slots at the receiver and starts draining the stored flits down-

43

3. ElastiStore: Low-Cost Virtual-Channel Buffers

stream at a rate of one flit per cycle. After L f + Lb − 1 cycles, the buffer
will be empty (no more flits to drain) and the ready(i) signal will be
asserted, causing the fist new flit to arrive L f + Lb − 1 cycles later (the
ready(i) signal is asserted in the same cycle that the last flit is drained).
Therefore, in a time frame of 2(L f + Lb − 1) cycles, the receiver was
able to drain only L f + Lb − 1 flits, which translates to 50% through-
put. Thus, a single active VC can enjoy 100% throughput when it has
2(L f + Lb − 1) buffers and is ready when the number of empty slots
is at least L f + Lb − 1. The baseline VC-based EB employed in single-
cycle links (L f = Lb = 1) is a sub-case of the general pipelined link and
achieves 100% throughput of lossless operation using 2 buffers per VC.

The scenario of using simple EBs on the link instead of pipeline registers
in the case of VC flow control will work, but only after introducing de-
pendencies across VCs, since the flow control information per VC needs
to be serialized under a common ready/valid handshake; if one VC
stops being ready, all the words on the link should stop, irrespective of
the VC they belong to, as done in [72]. Such dependencies ruin the iso-
lation and deadlock-freedom properties of the VCs and require ad-hoc
modifications to the flow control mechanism, even if sufficient private
buffer space is allocated per VC.

3.4 The ElastiStore Buffer Architecture
ElastiStore represents the simplest form of a VC-based buffer structure
that can be used either as a distributed buffering alternative, or at the
inputs of VC-based routers, as will be shown in Section 3.5. When the
flow-control signals between two ElastiStore units take more cycles to
propagate in the forward or in the backward direction ElastiStore uses
shared buffer positions to absorb the in-flight flits.

As in the case of single-cycle links, in pipelined links with L f and Lb
of forward and backward latencies, respectively, we minimize buffering
by employing sharing and by exploiting the fact that only a single VC
(dynamically selected) can enjoy 100% throughput when it is the only
active VC in the system.

Instead of having 2(L f + Lb − 1) buffer slots for each VC, we dedicate

44

3.4. The ElastiStore Buffer Architecture

L f + Lb − 1 slots per VC needed for safe operation (called the main
buffers) and L f + Lb − 1 more, which can be dynamically shared by all
VCs (called the shared buffer). Any VC is ready, as long as there are
L f + Lb − 1 empty slots either in its main register alone, or accounting
for the free space in the shared buffer as well. Therefore, a single active
VC can enjoy 100% throughput, while, in the case where the shared
buffer is full, every active VC cannot get more than 50% of throughput
(it can receive/send L f + Lb− 1 flits at most every 2(L f + Lb− 1) cycles);
when many VCs are active, the throughput per VC is always much lower
than 50%.

Under high utilization, the channel is already shared by many VCs,
and achieving high-throughput per independent VC does not give much
benefit, unless it is the only active VC. Therefore, our optimal goal is to
offer full throughput to a single-active VC by using just one register per
VC of private buffering, as well as L f + Lb − 1 more positions shared
by all VCs. If we try to achieve this goal with the current flow-control
semantics, dependencies across VCs may appear that can possibly lead
to a deadlock. Assume, for example, that the ith VC uses its main buffer
(1 register) and at least one slot from the shared buffer, leaving less
than L f + Lb − 1 free slots in the shared buffer. Then, every other VC
must de-assert its ready signal, even if its main register is empty, since
the available free slots for each VC are less than L f + Lb − 1, which are
needed to guarantee safe operation per VC. Under this scenario, the
traffic on one VC is allowed to block the traffic on another VC, which
removes the needed isolation property across VCs.

3.4.1 Flow Control
To achieve our goal of minimum buffering, we should change the flow
control mechanism and allow the sender to explicitly store the condi-
tion of each downstream VC, as done by credit-based flow control. The
sender keeps a free slot counter, or else called a credit counter, for each
downstream VC, and a counter for the shared buffer that counts the
available shared buffer slots. A VC is eligible to send a new flit when
there is at least one free position (either at the main register or the shared
buffer). Once the flit is sent from the ith VC, it decrements the credit
counter of the ith VC. If the credit counter of the ith VC was already

45

3. ElastiStore: Low-Cost Virtual-Channel Buffers

equal to or smaller than zero, this means that the flit consumed a free
slot of the shared buffer and the counter of the shared buffer is also
decremented.

Since the state of each VC is kept at the sender, the receiver only needs
to send backwards a credit-update signal, including a VC ID, which
indexes the VC that has one more available credit for the next cycle. On a
credit update that refers to the jth VC, the corresponding credit counter
is increased. If the credit counter is still smaller than zero, this means
that this update refers to the shared buffer. Thus the credit counter of
the shared buffer is also increased. Please note that even if there is a
separate credit counter for the shared buffer the forward valid signals
and the credit updates refer only to the VCs of the channel and no
separate flow control information is needed for the shared buffer.

In this case, safe operation is guaranteed even if there is only 1 empty
slot per VC (main register), but with very limited throughput due to the
increased round-trip time; no flit can be in flight if it has not consumed
a credit beforehand. A single active VC can utilize both its main register
and all the positions of the shared buffer and achieve 100% throughput,
by effectively allowing this VC to use L f + Lb buffers in total.With cred-
its, once a credit update is sent backwards for a VC it means that a new
flit will arrive for this VC after L f + Lb − 1 cycles. Therefore, offering
to a single VC L f + Lb − 1 buffers, means that at the time the last flit is
drained from the VC the first new flit will arrive thus leaving no gaps in
the transmission and offering full throughput. Note again that any VC
is still eligible to accept a new flit in its private (main) buffer, irrespective of
the state of the shared buffer, thus completely avoiding deadlock conditions.

By adopting credit-based flow control, the ElastiStore minimizes the pri-
vate buffer space per VC, thus achieving its main goal of minimizing the
buffer space to just one register per VC, and some extra shared space to
fully cover the round-trip time for one VC.

The use of credits, or ready(i)/valid(i) handshake signals, for the flow
control of different VCs are similar, in the sense that they both count
either implicitly, or explicitly, the available number of buffer slots for
each VC. For the ready(i)/valid(i) interfaces, this counting is done at the
receiver, and the sender is notified via the delayed ready signals. On

46

3.4. The ElastiStore Buffer Architecture

the contrary, in credit-based flow control, buffer availability is checked
locally at the sender, without any notification delay. This difference
in the notification delay causes the two flow-control policies to behave
differently, in terms of minimum buffering requirements for achieving
full throughput operation.

data_in

VC1

data(1)

en

D Q

VC0

data(0)

shared
module

W

W

W

en

D QVCid

credit
update

logV

valid(0)

valid(1)

en

D Q

valid(2)

VC2

data(2)
W

en

D Q

main

enqueue

ElastiStore control
in_valid(2)

in_valid(1)

in_valid(0)

in_ready(2)

in_ready(1)

dequeue

in_ready(0)

per VC signals

Figure 35: The organization of ElastiStore. The shared buffer consists of as many buffer
slots as required to cover the round-trip time of the flow-control signals

3.4.2 Hardware Implementation
The implementation of the generalized ElastiStore (which is able to sup-
port arbitrary round-trip times) is based on the three basic operational
principles/rules that characterize all ElastiStore designs and differenti-
ate them from other state-of-the-art buffer implementations:

1. Each VC has only 1 slot of private buffer space implemented via a
main register per VC, while the remaining buffer space is shared
and used together with the one main register per VC to cover the
round-trip time of the channel that ElastiStore is connected to (this
translates to 1 shared buffer for single-cycle links and L f + Lb − 1
buffer slots for a link with L f forward and Lb backward laten-

47

3. ElastiStore: Low-Cost Virtual-Channel Buffers

cies, respectively). This configuration offers the minimum possible
buffering, with the constraint that at most one VC can receive full
throughput. This is not a restrictive choice, since a VC will get full
throughput only when it is the only active VC. In all other cases,
each VC will receive an equal share of the available throughput.

2. Any allocation decision regarding which VC should dequeue a flit
from the ElastiStore structure is taken based only on the status
of the main registers. In this way, request generation can begin
without any overhead associated with checking the head-of-line
flits of many VC queues hosted in a shared buffer space.

3. When a main register sends a flit downstream and gets empty, it
is refilled in the same cycle, either with a flit possibly present in
the shared buffer, or directly from the input, assuming the new
flit belongs to the same VC. This design principle completes the
previous one and avoids idle cycles in the data flow. With this type
of refill, ElastiStore actually mimics the simple elastic buffer of
Fig. 3.1(c), which refills (in the same cycle) the main register using
the data of the auxiliary register, or the data of the input, when the
main register gets empty, in order to offer full throughput of data
transfer.

The introduced design principles and the use of negative credits – that
simplify the process of credit identification, i.e., which credits belong to
the main registers, and which ones belong to the shared buffer space –
offer an overall simplified buffering architecture.

The datapath that implements ElastiStore is illustrated in Figure 3.5.
The multiplexers at the input of the main registers allow new data to
come directly from the ElastiStore’s input, or the shared buffer. If the
main registers cannot accommodate an incoming flit, a shared slot is
allocated, where the flit is stored. As soon as the main register becomes
available again, the flit is retrieved from the shared buffer and moves to
the corresponding main register.

Every time a VC dequeues a flit from its main register, it should check
the shared buffer for another flit that belongs to the same VC. Figure 3.6
demonstrates the interaction between the shared buffer and the main
VC registers through a simple example. In cycle 0, VC A owns 2 shared

48

3.4. The ElastiStore Buffer Architecture

A0

B0

t=0

A1A2B1

deq A1

enq
B0

C1
B1A2 deq

C0

enq

C0

A1

B0

B1A2

deq

C1

t=1 t=2
A2

B0

B1B2 C1

t=3
enq

B2

Figure 36: An example of the interaction between the shared buffer and the main VC
registers in the generalized ElastiStore architecture. Every time a VC dequeues a flit from its
main register, it should check the shared buffer for another flit that belongs to the same VC.

slots and dequeues a flit from its main register. The empty main register
should be refilled in the same cycle in order to avoid any bubbles in
the flit flow control. Therefore, VC A initiates a search on the shared
contents to find the flits that match VC A and locate the oldest (the one
that came first). The refill of the main register of VC A is completed
in cycle 1. Then, in cycle 2, the same procedure is followed, effectively
loading the main register of VC A with a new flit. The main register of a
VC does not necessarily get new data from the shared buffer, but it can
be loaded directly from the input, as done for VC C in cycle 1.

FPA

input

data

register file

shared data

pointer FIFO

ID of

dequeuing VC
====

VC IDs

addresses

input

VC ID

select 1st available

addresses

current

write

address

Figure 37: The block diagram of the shared buffer of the ElastiStore architecture. The
shared buffer consists of two main storage modules. The first one (top part) is a shift-
register-based FIFO that stores (in each slot) the VC ID of a flit and a pointer. The second
storage module (bottom part) is the register file that stores the actual flit contents.

49

3. ElastiStore: Low-Cost Virtual-Channel Buffers

The shared buffer within ElastiStore should preserve a FIFO order, not
in terms of the whole buffer, but separately for the flits of each VC. In the
example of Figure 3.6, the flits’ order of arrival is preserved by shifting
them forward every time a slot in the shared buffer is emptied. However,
this is simply an abstract representation of what is really happening:
flits are not physically shifted, but, instead, their pointers change. In
other words, the FIFO order is maintained through the pointer logic.
The block diagram of the shared buffer of the ElastiStore architecture is
depicted in Figure 3.7. It consists of two main storage modules. The first
one (top part of Figure 3.7) is a shift-register-based FIFO that stores (in
each slot) the VC ID of a flit and a pointer. The second storage module
(bottom part of Figure 3.7) is the register file that stores the actual flit
contents. When a flit is pushed to the shared buffer, the actual contents
are written in the “register file”, while the write-address and the VC
ID of the incoming flit are pushed into the first empty slot of the shift
register (the “pointer FIFO” in Figure 3.7).

The proposed shared buffer does not participate in router allocation,
as imposed by the second design rule and, thus, it is redundant to be
able to “see” the head-of-line flits of all hosted VC queues (this option
would need at least one read pointer for each active VC queue). On
a read (dequeue operation), the shared buffer should be able to read
out the first appearance of the dequeuing VC ID, in order to refill its
main register. This is done by comparing the IDs stored in the “pointer
FIFO,” or the input, with the ID of the dequeuing VC, and selecting –
using a Fixed-Priority Arbiter (FPA) – the first one that matches. Then,
the pointer stored in the “pointer FIFO” is used to retrieve the actual
flit from the “register file,” while the information of the dequeued flit is
removed from the “pointer FIFO,” thereby causing all subsequent point-
ers to shift forward. At the same time, the address of the dequeued flit
is marked as available in the “register file” and can be reallocated to any
VC.

3.5 Integration of ElastiStore in NoC Routers
ElastiStore can be integrated at the inputs and at the outputs of a router,
as illustrated in Figure 3.8. When ElastiStores are used in both inputs

50

3.5. Integration of ElastiStore in NoC Routers

VA
STSA

LRC
Head

Body/Tail

LT

STSA LT

RC

ST

Input Buffer

ElastiStore

Input VC
State

SA
Output VC

State

VA

Output
Buffer

Flow
Control

arb

Pipeline
Register

possible pipeline stages

output buffer choices
ElastiStore

Figure 38: The integration of ElastiStore in NoC routers. ElastiStore modules can be
integrated at the inputs and at the outputs of a router. In general, ElastiStores can be
placed seamlessly and in a plug-and-play manner everywhere within the NoC.

and outputs, the output VCs refer to the buffers of the output ElastiS-
tore and not to the VC buffers at the input of the next router. The same
also holds for flow control information that reflects the buffer status of
the output ElastiStore of the same router. A flit is ready to move to
the output ElastiStore when the corresponding VC of the output Elasti-
Store is ready. The placement of an output ElastiStore actually breaks
the flow-control cycle (which determines the round-trip time) between
two neighboring routers in two parts: (1) the intra-router part, which in-
volves the forward and backward latencies inside the router, and (2) the
inter-router part, which only involves the flow-control latencies of the
link. The flow control on the links does not allow packets to change VC,
and its operation only needs an arbiter and a multiplexer for selecting a
flit to send to the next router.

In single-cycle routers, where one cycle is spent inside the router and
one on the link, the intra-router and inter-router round-trip times are
equal to two cycles. This configuration enables the use of ElastiStores at
the inputs and the outputs, which have only one register per VC, plus
one shared slot among all VCs. In pipelined configurations, however,
the intra-router round-trip time increases to more than two cycles, fol-
lowing the inevitable increase of the packet forward latency. In this case,

51

3. ElastiStore: Low-Cost Virtual-Channel Buffers

and assuming again that ElastiStores are placed both at the inputs and
at the outputs, the input ElastiStore should have one register per VC
plus an m-slot shared buffer (see Figure 3.5). When a VC is selected by
SA, its main register is dequeued and a refill possibly occurs from the
shared buffer. The refill data can be prepared beforehand, just after SA1,
thus overlapping the search in the shared buffer with SA2, while actual
dequeue (pointer movement) happens only if SA2 is also successful for
the same VC. Since the round-trip time across the link remains the same,
the output ElastiStore can still be the simplest one.

Baseline routers utilize a simple pipeline register – instead of the out-
put ElastiStores – that isolates the inter-router timing paths from link
traversal. Therefore, the round-trip times expand inevitably between the
inputs of two neighboring routers, which are the only flow-controlled
buffering points. In single-cycle baseline routers, this translates to 3
buffers per VC to cover the round-trip time, while a pipelined router
with two stages increments the credit round-trip latency by one more
cycle, thus needing a minimum of 4 buffers per VC. This analysis as-
sumes that credit updates across routers need at least one cycle to prop-
agate. This extra cycle can be removed if flow-control information is
transferred across routers via direct combinational paths. However, this
actually limits the benefits of pipelining, and the increased link delay
directly affects the speed of the router.

In every case, the proposed designs save considerable amount of buffers,
which directly translate to significant area savings without any network
performance loss, as it will be shown in the next section. When using
ElastiStore only at the inputs, one may reach the absolute minimum of
VC buffering of one register per VC (needed also for deadlock freedom),
plus any additional buffer slots needed for covering the round-trip time
and offering the privilege to a single active VC to achieve 100% through-
put. The use of ElastiStores at the output of the routers “steals” some
time from link traversal, due to the arbitration and multiplexing op-
eration. However, the extra delay added to the delay of the link will
affect the NoC clock frequency only in the case of very long wires. In
such cases, simple pipeline registers can still be used at the outputs, as
shown in Figure 3.8.

52

3.6. Evaluation

100K

120K

140K

160K

180K

200K

220K

1.2 1.4 1.6 1.8 2 2.2 2.4

A
re

a
 (

u
m

2
)

Delay (ns)

Base-8VC

ES-I-8VC

ES-IO-8VC

80K

90K

100K

110K

120K

130K

140K

150K

1.6 1.8 2 2.2 2.4

A
re

a
 (

u
m

2
)

Delay (ns)

Base-8VC

ES-I-8VC

ES-IO-8VC

40K

45K

50K

55K

60K

65K

70K

75K

1 1.2 1.4 1.6 1.8 2

A
re

a
 (

u
m

2
)

Delay (ns)

Base-4VC

ES-I-4VC

ES-IO-4VC

35K

40K

45K

50K

55K

60K

1.4 1.6 1.8 2 2.2

A
re

a
 (

u
m

2
)

Delay (ns)

Base-4VC

ES-I-4VC

ES-IO-4VC

(a) (b) (c) (d)

Figure 39: Hardware implementation results of various designs with (a)-(b) single-stage, and
(c)-(d) two-stage router designs, using an industrial low-power 45 nm standard-cell library.

3.6 Evaluation
In this section, we compare ElastiStore-based routers with conventional
VC-based routers, both in terms of hardware complexity and network
performance, which includes synthetic traffic patterns (Section 3.6.2), as
well as real application workloads (Section 3.6.3).

3.6.1 Hardware Implementation
The routers under comparison (using lookahead RC) were synthesized
to an industrial low-power 45 nm standard-cell library under worst-case
conditions (0.8 V, 125 ◦C), and placed-and-routed using the Cadence dig-
ital implementation flow. The generic router models have been config-
ured to 5 input-output ports, as needed by a 2D mesh network, and
to 4 and 8 VCs per port, while the flit width was set to 64 bits. The
area/delay curves, shown in Figure 3.9, were obtained for all designs
after constraining appropriately the logic-synthesis and back-end tools
and assuming that each output is loaded with a wire of 2 mm.

The routers under comparison cover baseline implementations with one
or two pipeline stages, as well as ElastiStore-based routers that include
buffers both at the inputs and the outputs (ES-IO) and only at the inputs
(ES-I). Baseline VC routers can be built with shallow, or deep buffers
per VC. It is critical, however, for each VC to contain as many buffers
as needed to cover the credit round-trip latency. For all the single-
cycle routers, we employed the combined allocation approach presented
in [82], which offers the same network performance as traditional allo-
cation organizations, but with significantly better achievable clock fre-
quency. On the contrary, the two-stage pipelined routers follow the nor-

53

3. ElastiStore: Low-Cost Virtual-Channel Buffers

mal allocation strategy, where SA begins only after VA has been com-
pleted for an arriving packet.

In all cases, the ElastiStore-based routers offer significant area savings,
up to 18% and 24% for 4 and 8 VCs respectively, without any delay
overhead. This behavior is the result of the reduced number of buffer
slots required by ElastiStore and the overall simplicity of its control logic
(less than 10% of the total ElastiStore area). The latter is a consequence
of the three newly introduced design principles/rules, and the simpli-
fied credit-handling protocol. The ES-I configuration, as expected, is
the most area-efficient solution. The ES-IO setup, which completely iso-
lates the inter-router flow control mechanism from the intra-router one,
achieves even faster designs, since the readiness of each VC is directly
provided by the ready/valid handshake signals, while still saving area
relative to the baseline design. Note that the delay numbers reported
correspond to operation at 0.8 V. At this low voltage, the clock frequency
of even ultra-fast 3-stage commercial routers is below or marginally pass
1GHz [119, 50].

Table 31: The energy per cycle (in pJ) required for baseline and ElastiStore-based routers
having 4 and 8-VCs, and operating in single-cycle or 2-stage pipelined configurations.

Buffers 4 VCs 8 VCs
1-stage 2-stage 1-stage 2-stage

ES-I 67 69 108 122
Base 87 91 153 167

The hardware complexity analysis is completed by reporting the energy
behavior of the routers under comparison. Energy (or area) comparisons
are meaningful when the compared circuits are optimized for the same
delay target. Therefore, based on the delay profile reported in Figure 3.9
for single-cycle and 2-stage pipelined solutions, we select the designs
that correspond to a delay of 1.5 ns and 1.8 ns for the case of 4 and
8 VCs, respectively. The energy consumed for each case is reported in
Table 3.1. The energy analysis is reported after taking into account all
layout parasitics, while the switching activity has been computed using
delay-accurate simulation of the derived logic-level netlists. The evalu-
ated routers are all driven by the same arriving packet sequence, which
mimics uniform random traffic of 1-flit and 5-flit packets at an injection

54

3.6. Evaluation

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

A
v
e
ra

g
e
 P

a
c
k
e
t

L
a
te

n
c
y
 (

C
y
c
le

s
)

Load (Flits/Node/Cycle)

BASE-8VC
ES-I-8VC

ES-IO-8VC

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

A
v
e
ra

g
e
 P

a
c
k
e
t

L
a
te

n
c
y
 (

C
y
c
le

s
)

Load (Flits/Node/Cycle)

BASE-4VC
ES-I-4VC

ES-IO-4VC

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

A
v
e
ra

g
e
 P

a
c
k
e
t

L
a
te

n
c
y
 (

C
y
c
le

s
)

Load (Flits/Node/Cycle)

BASE-8VC
ES-I-8VC

ES-IO-8VC

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

A
v
e
ra

g
e
 P

a
c
k
e
t

L
a
te

n
c
y
 (

C
y
c
le

s
)

Load (Flits/Node/Cycle)

BASE-4VC
ES-I-4VC

ES-IO-4VC

(a) (b) (c) (d)

Figure 310: Latency vs. load curves for single-stage and two-stage baseline and ElastiStore-
based pipelined routers with 4 VCs and 8 VCs under Uniform Random (UR) traffic. Config-
urations with 4 and 8 VCs per port are evaluated.

rate of 0.2 flits/cycle. The traffic characteristics determine the header
contents of each packet, while the data contents – i.e., the payload – of
each packet (mostly for body and tail flits) is produced using a uniform
random number generator. In all cases, the energy required to drive the
output links is also included.

ElastiStore-based routers require the least energy per cycle, due to the
significant energy cost reduction of the buffers, which are responsible –
together with the network links – for the majority of the energy required
in each data transfer. The energy reductions due to ElastiStore surpass
its area savings and lead to 23% and 28% more energy-efficient routers
for 4 and 8 VCs, respectively.

3.6.2 Network Performance
Network-performance comparisons were performed using a cycle-accu-
rate SystemC network simulator that models all micro-architectural com-
ponents of a NoC router, assuming an 8×8 2D mesh network with XY
dimension-ordered routing. The evaluation involves two synthetic traf-
fic patterns: Uniform Random (UR) and Bit-Complement (BC) traffic.
Other permutation traffic patterns follow very similar trends to BC traf-
fic. The injected traffic consists of two types of packets to mimic real-
istic system scenarios: 1-flit short packets (just like request packets in
a CMP), and longer 5-flit packets (just like response packets carrying a
cache line). For the latency-throughput analysis, we assume a bimodal
distribution of packets with 50% of the packets being short, 1-flit pack-
ets, and the rest being long, 5-flit packets, in accordance to recent stud-
ies [83].

55

3. ElastiStore: Low-Cost Virtual-Channel Buffers

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25 0.3

A
v
e
ra

g
e
 P

a
c
k
e
t

L
a
te

n
c
y
 (

C
y
c
le

s
)

Load (Flits/Node/Cycle)

BASE-4VC
ES-I-4VC

ES-IO-4VC

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25 0.3

A
v
e
ra

g
e
 P

a
c
k
e
t

L
a
te

n
c
y
 (

C
y
c
le

s
)

Load (Flits/Node/Cycle)

BASE-8VC
ES-I-8VC

ES-IO-8VC

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25 0.3

A
v
e
ra

g
e
 P

a
c
k
e
t

L
a
te

n
c
y
 (

C
y
c
le

s
)

Load (Flits/Node/Cycle)

BASE-4VC
ES-I-4VC

ES-IO-4VC

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25 0.3

A
v
e
ra

g
e
 P

a
c
k
e
t

L
a
te

n
c
y
 (

C
y
c
le

s
)

Load (Flits/Node/Cycle)

BASE-8VC
ES-I-8VC

ES-IO-8VC

(a) (b) (c) (d)

Figure 311: Latency vs. load curves for single-stage and two-stage baseline and ElastiStore-
based pipelined routers with 4 VCs and 8 VCs under Bit-Complement (BC) traffic. Config-
urations with 4 and 8 VCs per port are evaluated.

Even with the lower amount of buffering – which translates directly to
area/power savings – the ElastiStore-based routers achieve similar net-
work performance when compared to single and two-cycle VC-based
routers. Figures 3.10(a)-(b) depict the load-latency curves of all single-
cycle routers under comparison using 4 VCs and 8 VCs under UR traf-
fic. In all cases, the performance of the routers is virtually indistin-
guishable, both at low and at high loads, while the ES-IO configuration
achieves slightly less delay at high loads, when compared to ES-I. The
same conclusion is drawn by the results shown in Figures 3.10(c) and
(d), for the case of two-stage routers. Due to its directed nature, BC
traffic eliminates the small differences in the performance of baseline
and ElastiStore-based designs at high loads, as depicted in Figure 3.11.
Therefore, the savings of ElastiStore are offered to the NoC designer for free,
without trading off performance.

3.6.3 Full-System Simulation Results

Experimental Setup

To assess the impact of ElastiStore on overall system performance, we
simulate a 64-core tiled CMP system running real application workloads
on a commodity operating system. The execution-driven, full-system
simulation framework employs Wind River’s Simics [57] – which han-
dles the functional simulation tasks – extended with the Wisconsin Mul-
tifacet GEMS simulator [85]. The latter provides a detailed timing model
of the memory hierarchy and it includes the GARNET [1] cycle-accurate
NoC simulator.

56

3.6. Evaluation

Table 32: System parameters for the execution-driven, full-system simulations.
Processor 64 in-order UltraSparcIII+ cores in a tiled CMP architecture
OS Solaris 10
L1 caches Private, separate 32 KB I & D, 4-way set associative,

2-cycle latency, 64 B cache-line
L2 cache Shared NUCA LLC, 4-way set associative,

16 MB total (64 cores×256 KB slice/core), 10-cycle latency,
64 B cache-line

Coherence MOESI directory-based cache coherence protocol
Main memory 4 GB, 300-cycle latency
Network 8×8 2D Mesh, 4-stage router pipeline (+1 cycle link delay),

XY Routing, 3 VCs per input port
VC size Baseline: 6 flits per VC

ElastiStore: 1-flit register per VC, and a 5-flit shared

Table 3.2 shows the full-system simulation parameters. Each CMP “tile”
consists of an in-order UltraSparc III+ processor core with private and
separate 32 KB L1 I and D caches. The CMP has a total of 16 MB shared
L2 cache (each tile has a 256 KB L2 slice; i.e., 64×256 KB = 16 MB
total), and 4 GB of off-chip main memory (DRAM). The system uses
the MOESI directory-based cache coherence protocol. The NoC is an
8×8 2D mesh (i.e., one router per CMP tile) employing a dimension-
ordered XY routing. Each router is implemented as a conventional
4-stage pipelined router (RC, VA, SA, ST) with one cycle inter-router
link delay. As previously mentioned, cache coherence protocols require
isolation between the various message classes to avoid protocol-level
deadlocks. Specifically, the MOESI protocol requires at least three vir-
tual networks to prevent protocol-level deadlocks. Consequently, in our
simulations, each router input port has 3 VCs, each handling a specific
message class of the coherence protocol.

Two different router architectures were considered. The baseline router
design uses 3 VCs per input port, with each VC buffer having a 6-flit
depth. This setup represents a “traditional” NoC input port architec-
ture, where the buffer space is statically allocated to each VC. On the
contrary, the proposed ElastiStore architecture uses only one single-flit
register per VC, plus a 5-flit buffer shared among all 3 VCs, which aims
to provide a direct comparison with the baseline setup, since each VC

57

3. ElastiStore: Low-Cost Virtual-Channel Buffers

Figure 312: The total execution times of the various PARSEC benchmark applications,
normalized to the baseline router. The baseline router setup uses 3 VCs per input port, with
each VC buffer storing 6 flits. The ElastiStore setup uses one single-flit register per VC, plus
one multi-flit buffer of size 5, which is shared among all 3 VCs.

can hold a maximum of 6 flits (1 in the main VC register + all 5 flits in
the shared buffer). The six-flit buffers are necessary to cover the 6-cycle
round-trip time of a 4-stage pipelined router (+1 inter-router link stage).

Both the baseline and ElastiStore-based router architectures were imple-
mented within GARNET. The GARNET NoC simulator cycle-accurately
models the packet-switched routers, their pipelines, virtual-channel buf-
fers, allocators/arbiters, crossbars, and all inter-router links.

The executed applications are part of the PARSEC benchmark suite [7],
which contains multi-threaded workloads from various emerging appli-
cations. All benchmarks were executed with 64 threads (one thread per
processing core). The execution times reported are those of the “Regions
Of Interest (ROI)”, as identified in the PARSEC benchmarks. The ROI of
each benchmark starts right after the initialization of the input data and
ends when the computation is complete.

Results with PARSEC Applications

We ran the PARSEC benchmarks [7] using the setup described in the
previous sub-section to evaluate the two different NoC configurations.
Figure 3.12 shows the total execution times of the various applications,
normalized to the baseline router.

The important insight that can be extracted from Figure 3.12 is that a
lightweight ElastiStore design with one single-flit register per VC and
a 5-flit shared buffer can yield near-identical performance as a baseline

58

3.6. Evaluation

design with a 6-flit buffer per input VC. In fact, the performances are in-
distinguishable. Both router architectures can provide a maximum space
of 6 flits per VC, but the ElastiStore setup shares this maximum depth
among all VCs (through the 5-flit shared buffer). This sharing results
in much more efficient resource utilization, with no impact on perfor-
mance. The reason why such a dramatic decrease in buffer space is not
accompanied by a decrease in overall system performance is due to the
very low average NoC traffic injection rates observed when running real
single- and multi-threaded applications in CMPs [44]. Hence, the base-
line router architecture is, in fact, significantly over-provisioned for the
needs of real application workloads, such as the PARSEC benchmarks.
The fact that the ElastiStore architecture provides the same performance
as the baseline with only 44% of the buffer space (a total of 8 flit slots
per input port versus 18 in the baseline) results in substantial savings.

3.6.4 Virtual Channels vs. Multiple Physical Networks
The separation of resources offered by VCs can also be achieved by mul-
tiple physical networks (built with wormhole routers), where each phys-
ical network serves a certain VC – or, more accurately, a virtual network,
since moving from one VC to another one is impossible in the case of
multiple networks, due to the physical separation of the networks. Low-
cost wormhole routers can be built with simple EBs at the inputs and
the outpus of the router, as proposed in [89], using the 2-slot EBs of
Figure 3.1(c), or 3.1(d).

Comparing VC-based architectures with multiple physical VC-less net-
works is a multi-dimensional problem, which has been the focus of other
independent research efforts, such as [151]. However, we repeat part of
this study using ElastiStore-based VC routers.

In our comparisons, we consider four cases of an 8× 8 2D mesh net-
work, which offers 8-way separation of resources, assuming a channel
width of 64 bits. The first examined case involves a network built with
8-VC ElastiStore-based routers, where ElastiStores are used only at the
inputs of the router (ESI-8VC-64). The second and the third case in-
volve 8 physical networks of EB-based wormhole networks. The second
case uses 64-bit channels per network, thus having a total of 64× 8 bits

59

3. ElastiStore: Low-Cost Virtual-Channel Buffers

per channel (EB-WHx8-64), while the third case assumes equal-bisection
bandwidth with the VC-based networks and uses 64/8 bits per chan-
nel (EB-WHx8-13). However, since we would like to keep the packet’s
header in one flit, we need at least 13 bits per network channel (2 bits for
the flit’s ID, 6 bits for the network addressing, and 5 bits for encoding
the output port request, as needed by the lookahead routing computa-
tion employed by all routers under comparison). The last case involves
a hybrid of both worlds. It consists of 2 physical networks of 4-VC
ElastiStore-based routers, which – under equal bisection bandwidth –
operate on 32-bit channels (ESI-4VC-x2-32).

While the first two cases can send and receive directly the 1-flit and 5-
flit packets used in the previous experimental setup, the third and the
fourth cases impose a significant serialization latency, since the number
of flits per packet should be increased by 5× and 2×, in order to fit into
the 13-bit and 32-bit channels, respectively. Please note that EB-WHx8-
13 gets 1.6× more bisection bandwidth that ElastiStore-based architec-
tures due to the 13-bit channels.

For a fair comparison, we assume a static VC allocation policy for the
VC-based routers. In this case, packets are not allowed to change VC
in-flight and are forced to keep the VC given to them at the source (i.e.,
similar to what happens when a packet enters a physical network of
VC-less routers). This feature simplifies significantly the VA logic of VC-
based NoC routers [37], with a slight reduction in the overall network
throughput, and can be used with ElastiStore, too.

Firstly, we compare the four examined cases in terms of network per-
formance, using the same configuration of Section 3.6.2 for UR traffic.
The results are shown in Figure 3.13(a). EB-based wormhole routers
are small and fast. Thus, in the load-latency curves of Figure 3.13(a),
we assume that the routers can switch incoming flits in one cycle. On
the contrary, VC-based routers operate in a 3-stage pipelined configura-
tion to achieve the same clock frequency. As expected, the EB-WHx8-64
configuration has the best performance, both in terms of latency and
throughput. The EB-WHx8-13 setup is the worst. ElastiStore-based VC-
based architectures enjoy high throughput of operation, despite having
8× less bisection bandwidth than EB-WHx8-64, and, as it will be shown
later, they achieve this goal with significantly less cost. The only draw-

60

3.6. Evaluation

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4

A
v
e
ra

g
e
 P

a
c
k
e
t

L
a
te

n
c
y
 (

C
y
c
le

s
)

Load (Flits/Node/Cycle)

EB-WHx8-64

EB-WHx8-13

ESI-8VC-64

ESI-4VC-x2-32

0

1

2

3

4

5

6

7

8

EB-WHx8-64 EB-WHx8-13 ESI-8VC-64 ESI-4VC-x2-32

A
re

a
 (

N
o
rm

a
liz

e
d
)

(a) (b)

Figure 313: (a) The load-latency curves, and (b) the normalized area cost of all examined
configurations for comparing virtual (using ElastiStore buffers), or physical separation of
resources. The area results are normalized to the area of a single EB-based wormhole network.

back of the VC-based architectures is the high zero-load latency, due to
the increased number of pipeline stages required to achieve high clock
frequencies.

The cost of the implementation of each case (in terms of area) is shown
in Figure 3.13(b), where – for the ElastiStore-based routers – 3-stage-
pipelined alternatives are examined with static VC allocation, which
have almost equal delay to that of simpler, single-cycle EB-based worm-
hole routers. ElastiStore with 8 VCs allows the design of NoCs offering
8-way separated resources, with less area cost than 8 physical EB-based
WH networks. The 24% area savings are the result of the efficient buffer
sharing mechanism of ElastiStore, derived using the three design prin-
ciples presented in Section 3.4.2 and the newly introduced credit-based
flow control that employs negative credits. As expected, the 8 physi-
cal networks of EB-based WH routers operating under equal bisection
bandwidth have lower area cost, but, as shown in Figure 3.13(a), they
also have the worst performance, both in terms of latency and satura-
tion throughput. The hybrid solutions that employ multiple physical
networks of ElastiStore-based routers, each one supporting a smaller
number of VCs keep the network cost low with acceptable performance.

The final outcome of this analysis is that ElastiStore significantly re-

61

3. ElastiStore: Low-Cost Virtual-Channel Buffers

duced the cost of VC-based routers, without sacrificing the throughput
of the network, thereby allowing the design of NoCs with a high-degree
of resource separation with lower cost than multiple physical networks.
The remaining challenge for VC-based architectures, which is orthog-
onal to ElastiStore, is the simplification of their allocation logic to de-
crease the number of pipeline stages required for achieving high clock
frequency. This would also lower the zero-load latency of each flit.

3.7 Related Work
In this section, we focus on the two main thrusts of prior research that
are most relevant to the proposed ElistiStore design: (a) elastic chan-
nels and buffering in NoCs, and (b) shared-buffering schemes in NoC
routers.

Kodi et al. [72] explored the integration of elastic storage elements into
the links of NoCs, in conjunction with traditional dynamically-assigned
VC input buffers. The introduced iDEAL router employs a hybrid flow
control, where multiple VCs are multiplexed on a single-lane link with
a ready/valid handshake. This hybrid flow control obligates the first
VC that is full to stop the remaining VCs – with possibly incoming flits
on the link – thus creating dependencies across VCs that may lead to
higher-level protocol deadlocks if not handled appropriately, irrespec-
tive of the available buffer space.

The notion of elastic channels in NoCs was further developed by Mich-
elogiannakis et al. [89, 90], which reused the latch-based elastic buffers
presented in [22] for minimizing the buffering cost in NoC routers. To
alleviate the problems caused by the serializing nature of elastic links,
which does not provide any isolation of traffic flows and prevents the
interleaving of packets – the authors resort to multiple physical chan-
nels, in order to create multiple sub-networks, instead of relying on a
hybrid flow control mechanism.

A modified version of elastic operation, which also enables traffic-flow
separation without multiple physical resources, has been employed in [39]
and [41]. In [39], elasticity is only preserved across the multi-drop busses
of the MECS topology, and, when it comes to the inputs of the routers,

62

3.7. Related Work

traditional VC-based buffers are used. On the contrary, in [41], elastic-
ity is preserved on single-lane channels, while separation of resources is
enabled by packet-level bubble flow control.

In contrast, ElastiStore uses lightweight EB primitives, and it can sup-
port any number of VCs, without the need to have multiple physical
sub-networks, or to rely on any hybrid flow control mechanism. More-
over, ElastiStore can be used either as a distributed buffer primitive,
or at the inputs and output of routers. The semantics of the VC flow
control mechanism are preserved, implemented either with indepen-
dent ready/valid handshakes per VC or using credits. The presence of
a shared buffer in ElastiStore is instrumental in optimizing the use of
the available buffer space and covering the arbitrary round-trip times
imposed by router pipelining. In essence, the proposed mechanism
achieves the same objective as the significantly more expensive per-input
shared-buffering techniques [136, 135, 66, 103, 102, 105]. Other buffer-
ing architectures that extend sharing across multiple inputs [138, 101, 76]
require multi-porting and even though they provide significant perfor-
mance in terms of throughput, they suffer in terms of router delay (or
they increase the required pipeline stages), and they do not scale well to
higher numbers of VCs per input port.

As opposed to the extremely lightweight shared-buffering structure of
ElastiStore,the aforementioned shared-buffering architectures rely on fair-
ly complex logic to keep track of the location of flits within the unified
buffer, which needs significant modifications to handle variable packet
sizes. Specifically, in shared-buffer schemes, designers predominantly
use linked lists [136, 135, 66], table-based approaches [103] that may pos-
sibly need multi-ported memory accesses in their pointer-tracking logic,
or self-compacting buffers [102, 105] to coordinate traffic flow through
the buffers. Each VC maintains its own set of pointers to identify where
its flits are located in the buffer. For example, in the case of ViChaR [103],
two control logic modules are needed in each input port (the Arriv-
ing/Departing Flit Pointers Logic and the Slot Availability Tracker) for
the correct operation of the shared buffer, regardless of the size of the
buffer. While the cost of this logic is amortized in routers with large
buffer space, the overhead becomes significant in routers with minimal
buffering.

63

3. ElastiStore: Low-Cost Virtual-Channel Buffers

Furthermore, state-of-the-art buffering mechanisms assume that all flits
of the VCs that reside in the shared buffer space should be visible in
the allocation logic, and the throughput per VC is a result of the VC
utilization and the status of the buffer space (available credits) in each
cycle. This behavior is avoided in ElastiStore, which allows only the
main registers of each VC (just 1 per VC) and not the shared buffer to
participate in allocation, and the throughput received per VC follows a
more strict distribution, allowing only one VC to receive full throughput
when it is the only active one (this is the only case that full throughput
matters). The shared buffer is isolated from the router’s operation; it
just refills the main registers of the VC, when needed. In this way, every
dependency across VCs is eliminated – which also enables deadlock-
free operation – while variable packet sizes are supported for free, as in
any baseline VC buffer with no sharing. The shared buffer of the gener-
alized ElastiStore partially follows a self-compacting approach, similar
in concept to [102, 105], although much simpler to implement. Flits are
written at the end of a FIFO irrespective of the VC they belong to, and
no data movement is needed to find an empty place for an incoming flit.

3.8 Conclusions
The NoC router’s buffer architecture is a critical design aspect that af-
fects both network-wide performance and implementation characteris-
tics. In this work, we efficiently merge elastic operation and buffer-
ing with virtual-channel flow control. The derived buffer architecture,
called ElastiStore, can take many forms, based on application demands.
ElastiStore can be used as the simplest form of VC buffering, which
uses only 1 register per VC, plus one more dynamically shared register
that enables a single active VC to achieve full throughput. Additionally,
when NoC routers follow a pipelined organization, ElastiStore can be
adapted to its most generic form, which utilizes a larger shared buffer
to cover the increased round-trip time arising from the pipelined oper-
ation. The new design principles governing the design of ElastiStore-
based routers enable the design of low-cost routers with significant area
savings and no delay penalty, as compared to current state-of-the art VC-
based routers. More importantly, the resulting ElastiStore-based routers
offer the same network performance as the aforementioned VC-based

64

3.8. Conclusions

implementations, as verified using extensive simulations with both syn-
thetic traffic and real application workloads.

65

Chapter 4

Distributed VC-based
Network-on-Chip Architecture

Traditional VC-based NoC architectures focus mostly on microarchitec-
tural improvements to the router’s internal organization and pipeline
structure [108], [98]. Prior research has explored salient router attributes,
such as appropriate allocation policies [91], as well as the optimization of
the associated VC buffering structures [138, 5, 41], concentrating mostly
on buffer sharing and related flow control strategies.

In this chapter, we revisit first the pipelined configurations of baseline
routers with the goal of identifying – via a simple intuitive analytical
model – the amount of pipelining needed to achieve optimal network la-
tency under arbitrary topologies, packet sizes, and routing algorithms.
Our analysis aims to shed more light on previous design trends that
targeted primarily the reduction of the intra-router pipeline stages. We
clearly show that router pipelining (and its associated clock frequency
benefit) will always be beneficial, even for simple NoC designs, when ap-
plied with care, so as to avoid over-pipelining and its associated dimin-
ishing returns.

Motivated by this analysis, we introduce ElastiNoC a distributed VC-
based router architecture, which enables fine-grained pipelining and
provides maximum flexibility in terms of NoC physical placement. The
proposed structures are also enhanced with novel self-testability features
and a scalable testing mechanism that achieves high fault coverage with

67

4. Distributed VC-based Network-on-Chip Architecture

small test application time.

While the concepts of distributed router design and fine-grained net-
work pipelining have been explored in the past, the focus has been on
applying the said attributes to designs that do not support VCs [116,
3, 115, 113, 48]. Supporting VCs in that context needs multiple paral-
lel networks of such distributed routers. Obviously, multiple networks
do not constitute the most resource-efficient solution, due to inevitable
resource duplication.

Hence, the need for an architecture that efficiently combines all these
benefits with support for VCs is imperative. To the best of our knowl-
edge, the design proposed in this thesis is the first distributed VC-based
router implementation that supports this form of modularity. The com-
bined effect of all introduced features enables the design of highly scal-
able VC-based NoC architectures, which offer high operating frequen-
cies and provide equal (or even better) networking performance, as com-
pared to state-of-the-art VC-based implementations.

4.1 Modeling Low-latency On-Chip Networks
In this section, we develop a simple intuitive analytical model that con-
nects the network latency with the routers’ operating clock frequency
and their internal pipeline organization. The goal is to construct a
model that enables the designer to derive a first-order approximation
to an optimal configuration, given certain parametrical constraints. The
presented model, although based on several simplifying assumptions,
provides valuable intuition on when router pipelining is needed, and
which pipeline depth makes sense to implement.

First, assume that the NoC’s topology and size are fixed, and the pos-
sible use of concentration has already been decided. Moreover, assume
that the link bit-widths have also been decided. Such decisions fix the
radix of the routers and their port sizes, which are critical factors in
determining the overall delay. Still, even for fixed-radix routers, their
delay can vary significantly, depending on the microarchitecture of the
routers (e.g., support for VCs, allocation organization etc.) and other
implementation constraints.

68

4.1. Modeling Low-latency On-Chip Networks

Figure 41: The delay of representative single-cycle 5-port NoC routers with 64-bit wide
ports and 4 VCs per input in the case of VC-based routers. The results are normalized to
the delay of a wormhole-based router (i.e., no VC support). “No VC change” means that
packets do not change VC; their VC is decided upon injection and remains the same until
they reach their destination.

Figure 4.1 shows the normalized minimum delay of several single-cycle
routers with 5 input ports and 64-bit wide channels when synthesized
in 45nm technology. The comparison includes (a) a simple wormhole
router, (b) a VC-based router with baseline VC allocation, whereby pack-
ets can change VC in-flight, (c) a VC-based router with baseline VC al-
location, whereby packets are not allowed to change VC, (d) a VC-based
router with speculative VC allocation, whereby packets can change VC,
and (e) a VC-based router with speculative VC allocation, whereby pack-
ets cannot change VC. All delays are normalized to the delay of the
wormhole router, which does not support VCs. In all cases, the routing
computation is performed in series with the remaining tasks.The VC-
based routers have 4 VCs per input port with 4 buffers per VC. The
wormhole router has 4 buffer slots per input port.

The delay of each single-cycle router is the sum of several sub-tasks, such
as Buffer Read (BR), Routing Computation (RC), VC Allocation (VA),
Switch Arbitration (SA), Handling of returning Grants (GH), and Switch
Traversal (ST), which also includes the delay of credit updates and VC
state re-allocation (in the case of a tail flit leaving an output port). Note

69

4. Distributed VC-based Network-on-Chip Architecture

that in speculative routers that do VA and SA in parallel, the critical
path passes through the SA unit. Even though the evaluated routers
have completely different behavior in terms of throughput-versus-load
performance, they represent almost all design options available for the
design of monolithic NoC routers. In any case, the minimum clock
cycle that a single-cycle router can operate at is TCYC ≥ D + c, where
D represents the worst-case delay of the router’s internal paths, and c
is the clocking overhead (sum of the register clock-to-Q delay and the
setup time; depicted as CO in Figure 4.1).

Router pipelining is expected to reduce the clock period. However, ev-
ery pipelining decision stops across the borders of the traditional basic
blocks within each router, e.g., VC allocation, switch arbitration, and
switch traversal. The fact that such blocks do not have an evenly bal-
anced delay profile – as shown in Figure 4.1 – makes pipelining even
harder, since the achieved clock frequency is limited by the delay of the
critical path. For the optimal case, we can assume that it is possible
to break the router’s critical path into k equal-delay stages. Then, the
router’s clock period can drop to

TCYC ≥
D
k
+ c (4.1)

By increasing the pipeline stages of a router, its clock frequency can in-
crease, thereby leading to faster implementations. At the same time,
however, each flit spends more cycles inside each router, before moving
to the next one. Therefore, the depth of the pipeline cannot be decided
in isolation; the decision should also take into account other network
parameters, such as the number of hops each packet needs to make
between source and destination pairs, and the average packet size, as-
suming that a mix of packets of different sizes may traverse the network.

The hop count is determined by many factors, such as the network
topology and size, the employed routing algorithm, and the statistics
of the traffic patterns. To keep our model simple, we incorporate the
contributions of all these factors within one variable, i.e., the average
hop count H, which averages the contribution of each feature. Thus, the
zero-load latency (in cycles) of a packet is equal to

T = H (k + 1) + P− 1 (4.2)

70

4.1. Modeling Low-latency On-Chip Networks

16

18

20

22

24

26

28

30

0 1 2 3 4 5 6 7

70

80

90

100

110

Z
e

ro
-l

o
a

d
 L

a
te

n
c
y
 (

n
s
)

A
re

a
 (

k
u

m
2)

Number of Pipeline Stages (k)

-22%

-6%
-1%

16

18

20

22

24

26

28

30

0 1 2 3 4 5 6 7

70

80

90

100

110

Z
e

ro
-l

o
a

d
 L

a
te

n
c
y
 (

n
s
)

A
re

a
 (

k
u

m
2
)

Number of Pipeline Stages (k)

-21%

-7%

(a) (b)

Figure 42: The average zero-load packet latency (in absolute time) computed directly from
eq. (3) and the associated router area overhead, as the number of pipeline stages are varied.
Results are shown for (a) a baseline, and (b) a speculative VC-based router assuming 4 VCs
per input port.

Each flit spends k cycles in each k-pipelined router and 1 cycle to cross
the link between two routers. Variable P = L/W represents the serial-
ization latency of a packet with a size of L bits traveling over W-bit wide
physical links1.

Since each k-stage pipelined router works with a clock period of TCYC
2,

the zero-load latency of each packet in absolute time is the product of the
latency in cycles and the minimum clock period of a pipelined router:

TABS(k)=T ×TCYC = (H (k + 1) + P− 1)
(

D
k
+ c

)
(4.3)

It should be noted here that even if the use of the packet’s zero-load
latency alone is not sufficient to fully capture a NoC design’s behavior,
the resulting configurations will still hold for the majority of possible
network loading conditions that are not close to the saturation through-
put.

1The minus one removes the contribution of the head flit, which is included in the
first term of the equation.

2For simplicity, we assume that all NoC components (e.g., routers and links) belong
to a single clock domain.

71

4. Distributed VC-based Network-on-Chip Architecture

To explore the interesting interplay between packet latency and pipeline
depth, we fix the average hop count to H = 6.25, which roughly cor-
responds to deterministic XY routing in an 8×8 2D mesh, assuming
uniform random traffic and an average packet size of P = 3 (50% 1-flit
request packets and 50% 5-flit reply packets). For this configuration,
the zero-load latencies TABS (as a function of k) of (a) a baseline and (b)
a speculative single-cycle VC-based router that allows for in-flight VC
changes, are shown in Figure 4.2. When k moves from 1 to 2 (k = 1
corresponds to the un-pipelined single-cycle solution), the latency sav-
ings are significant and are above 20%. The addition of more pipeline
stages reduces packet latency, but with diminishing returns. For exam-
ple, moving from 3 to 4 pipeline stages offers less than 1% savings in
packet latency, without justifying the additional cost in control logic and
buffering resources. In a VC-based router, the number of buffers should
be equal to the minimum required to cover the flow-control round-trip
latency; else, throughput is severely compromised. Pipelining increases
the round-trip delay, which, in turn, increases the mimimum buffer-
ing requirements of the entire router. Therefore, any pipeline decision
should also take into account the buffering cost that this option incurs.
Figure 4.2 depicts the area cost required for each pipelined alternative.
Straight lines are actual measurements after synthesis while dashed lines
correspond to calculations that add the area of extra buffering. Inspect-
ing packet latency and buffering cost together leads to the conclusion that
pipelining is indeed a useful design choice that ends its useful contribution
at around 3 pipeline stages. Above that point, the investment in extra area
due to more pipeline stages is not compensated by the (diminishing)
reductions in packet latency.

In addition to the low-radix scenario examined above, we also experi-
mented with high-radix routers (e.g., those found in a flattened butterfly
topology [68]) to explore optimality in networks with lower hop counts,
but higher router latencies (due to the complexities associated with high-
radix designs). Our evaluation results – omitted for brevity – indicate
that optimal pipelining in those scenarios is achieved with 4 or 5 stages,
depending on the various salient parameters.

Using the simple analytical model leads to two interesting conclusions.
The first one is that the decision of pipelining the router cannot be made

72

4.2. ElastiNoC: Modular VC-based Architecture

solely based on its delay, but the process should also take into account
the environment in which the router will operate. The second one (and
perhaps non-intuitive) is that the designer should not only opt for mi-
croarchitectural optimizations that decrease the router’s delay by paral-
lelizing its tasks (e.g., with speculation), but, instead, should embrace a
combined approach that utilizes optimal pipelining. This realization serves
as the primary motivation and fundamental driver of the work presented in
this thesis.

Unfortunately, in state-of-the-art monolithic router structures, pipelin-
ing decisions stop across the boundaries of the traditional basic blocks,
which have been widely viewed as “atomic” (i.e., indivisible). Further-
more, the delay of these blocks is not evenly balanced. Therefore, even
if 3-stage pipelines (or 4- and 5-stage pipelines in high-radix environ-
ments) are still possible with this coarse separation, the achievable clock
frequency would be sub-optimal, since the speed of the router would be
limited by the worst-case delay of the most delay-critical block. Ad-
ditionally, most existing router designs are inherently centralized in
terms of their physical layout. This is attributed to certain monolithic
components within each router; the crossbar switch, the allocators, and
the buffering structures significantly limit the possible flexibility in the
physical placement of the overall router design. Consequently, current
architectures are not spatially scalable, i.e., they cannot be efficiently dis-
tributed in space. This limitation may also have adverse effects on the
router’s delay.

These limitations of traditional VC-based router architectures are ad-
dressed by the ElastiNoC architecture proposed in this work. The new
design philosophy: (a) enables modular pipeline implementations, (b)
yields high operating frequencies, and (c) allows for efficient spatially
distributed hardware implementations. The latter characteristic pro-
vides the floor-planning and placement tools with more freedom in gen-
erating optimal layout configurations.

4.2 ElastiNoC: Modular VC-based Architecture
Any network topology, from single-stage crossbars to arbitrary cubes,
meshes, or butterfly-based structures can be implemented by decom-

73

4. Distributed VC-based Network-on-Chip Architecture

MU

LRC
In#0

2VC
Elastistore

Out#0

In#3
Out#3

MU

MU

MU

MU

MU

LRC

Figure 43: The modular construction of an example ElastiNoC 4×4 VC-based router using
the proposed MU primitive that supports 2 VCs.

posing the switch operation to primitive merge and split functions. We
design, for the first time, novel merge primitives (and the associated
simplified split structures) that support VCs and offer the same degree
of flexibility – in terms of network performance and functionality – as
monolithic VC-based routers, but with higher-operating speed, and dis-
tributed physical placement capabilities.

4.2.1 Modular Router Construction
The fundamental primitive of ElastiNoC, called the Merge Unit (MU),
consists of two inputs and one output. Its goal is to switch and buffer
locally the flits of two inputs that belong to different VCs. Buffering is
done via ElastiStore units [127], which follow an elastic protocol and are
able to simultaneously store the data of many VCs using the minimum
amount of buffering. Each ElastiStore module comprises one single-flit
register per VC, plus one other single-flit register that can be dynami-
cally allocated to the first stalled VC.

By using MUs and splitting the data arriving at each input port, one can
design an arbitrary VC-based router. An example is shown in Figure 4.3,
which depicts an ElastiNoC router with 4 inputs and 4 outputs. Upon

74

4.2. ElastiNoC: Modular VC-based Architecture

arrival at the input of the router, each packet has already computed
its destined output port via Look-ahead Routing Computation (LRC).
Subsequently – depending on buffer availability, output VC availability,
and the allocation steps involved in each MU – the flits of the packet are
forwarded to the MU of the appropriate output. Integration of MU and
ElastiStore primitives is straightforward, since they all operate under
the same ready(i)/valid(i) handshake protocol. All router paths from
input to output see a pipeline of MUs of log2 N stages. Moving to the
next router involves one extra cycle on the link that is just a one-to-one
connection between two ElastiStores. The flow control on the links does
not allow packets to change VC and its operation needs only an arbiter
and a multiplexer for selecting a flit to send to the next router.

The fact that all input-to-output paths experience log2 N stages of MUs
is extremely important. This attribute aligns ElastiNoC with the opti-
mal pipelining conclusions extracted in Section 4.1 for both low- and
high-radix routers. For low-radix routers (with 5-8 input ports), optimal
pipelining calls for 2-3 stages, while the 4-5 pipeline stages required for
high-radix routers (with more than 12 input ports) are also in agree-
ment with the logarithmic number of stages of the proposed architec-
ture. Thus, ElastiNoC allows for sufficiently fine-grained modularity,
which can yield optimally pipelined designs over a wide spectrum of
router radices.

Due to the distributed nature of ElastiNoC, the split connections can be
customized to reflect the turns allowed by the routing algorithm. For
example, in a 5-port router for a 2D mesh employing XY dimensioned-
ordered routing, splitting from the Y+ input to the X+ output is not
necessary since this turn is prohibited. Several other deterministic and
partially-adaptive routing algorithms can be defined via turn prohibits
as shown in [34]. When such customizations are applied, significant
area savings are expected, due to the removal of both buffering and
logic resources. On the contrary, such optimizations do not make sense
in traditional VC-based routers, since only parts of the crossbar and
switch allocation logic are reduced, while leaving input buffering, that
is responsible for the majority of the router’s area, unaffected.

This modular router construction enables packet flow to be pipelined
in a fine-grained manner, implementing all necessary steps of buffering,

75

4. Distributed VC-based Network-on-Chip Architecture

per
Input VC

availready

input
VC state

outVC(0)
valid(0)

dequeueVC

#0

VC

#1sh
ar

ed

VA1/SA1

V VA1
V:1 arb

availready

V

SA1
V:1 arb

SA2
2:1 arb

selected
output VC

avail
ready

VC

#0

VC

#1sh
ar

ed

outVC(1)
valid(1)

VC

#0

VC

#1sh
ar

ed

Output

output
VC stateInput #0

Input #1

granted(0)

granted(1)

1

0

Figure 44: The fundamental ElastiNoC primitive, the Merge Unit (MU). The diagram depicts
the per-input and per-output multiplexers together with the combined allocation logic (SA1,
SA2) that runs in parallel to VA1.

VC and port allocation, and multiplexing in a distributed way inside
each MU, or across MUs. Also, the placement of MUs does not need to
follow the floor-plan of the chosen NoC topology. Instead, MUs can be
freely placed in space, provided that they are appropriately connected.

4.2.2 The Merge Unit (MU)
Each MU is responsible for switching one output between 2 inputs as-
suming the existence of per-input and per-output VCs, as shown in Fig-
ure 4.4. Since switching is achieved by connecting several MUs in series
(as illustrated in Figure 4.3), the buffers presented at the input of Fig-
ure 4.4 are actually the output buffers of the previous MUs.

Packets arriving at the two inputs of each MU must compete for a single
output. Since the output can carry flits that belong to different VCs, each
packet has to first allocate a VC at the output of the MU (known as an

76

4.2. ElastiNoC: Modular VC-based Architecture

“output VC”), before leaving the input VC. Allowing packets to change
VC in-flight, within each MU, is possible when the routing algorithm
does not impose any VC restrictions (e.g., XY routing does not even
require the presence of VCs). However, if the routing algorithm and/or
the upper-layer protocol (e.g., cache coherence) place specific restrictions
on the use of VCs, arbitrary VC changes are prohibited, because they
may lead to deadlocks. Any restrictions are enforced by the allocator of
the MU.

Our goal is to make the MU as fast as possible without sacrificing
throughput. Therefore, we follow a combined allocation approach [82],
customized and optimized to the characteristics of our design by allow-
ing packets to change VC in flight at the granularity of a single MU. Each
input VC holds two state variables showing (a) if the VC has valid data,
and (b) if it has been allocated to an output VC. Each output VC also
holds two state variables: (a) variable “available” indicates whether it is
currently allocated (“locked”) by an input VC, and (b) variable “ready”
indicates if there exists free buffer space, which, in our case, is received
by the output ElastiStore’s ready signals.

When a head flit arrives at an input VC it simultaneously tries to get
matched to an output VC, and also to gain access to the output port of
the MU. Both actions should be successful for the head flit to reach the
output of the MU. Before issuing any request to the allocation logic, the
head flit checks if there is at least one available and ready output VC
(readiness corresponds to buffer availability). If this is true, the head flit
issues a request to SA1 that promotes one flit from each input. Next, the
two input ports (i.e., the SA1 winner of each port) arbitrate in global SA
(SA2) to advance to the output port via the data multiplexers driven by
the grant signals of the SA1 and SA2 round-robin arbiters.

In parallel to SA1 and SA2, the head flit has to select one available out-
put VC. This is done independently per input VC using one V:1 round
robin arbiter (VA1), where V denotes the number of supported VCs.
Thus, when a head flit wins SA2, it is allocated to the output VC se-
lected in parallel by VA, and it updates its per-input state variable. On
the contrary, if a head flit loses in SA2, it will not refresh its VC state
and retry in the next cycle, repeating the whole process. The parallel
operation of VA1 and SA1-SA2 does not involve any speculation, since

77

4. Distributed VC-based Network-on-Chip Architecture

VC0LFSR

s
h

a
re

d

VC1
TestEn

1

0

availRVC0LFSR

s
h

a
re

d

VC1
TestEn

1

0

Input B
ElastiStore

outVCV

MISR

s
h

a
re

d

w

w

w

w

w

w

1

1

1

1

Serial Scan In

Serial Scan In

Serial Scan Out

w

Merging Unit
Multiplexing and
Allocation Logic

Output
Elastistore

Input A
ElastiStore

CaptureEn

outVCV

Arb. Priority

scannable registers

Figure 45: BIST enhancements of a merge unit by incorporating the logic of LSFR/MISR
within that of the shared buffer at each ElastiStore.

SA1 requests are considered valid only when there is at least one avail-
able and ready output VC. The stored input VC state is inherited by
the packet’s following body and tail flits, which use it (a) to generate
an SA1 request (after checking with the output VC’s readiness), and (b)
to reach the same output VC, after winning in SA2, as welll. The tail it
is also responsible for releasing both the per-input and the per-output
state variables, allowing the output VC to be allocated to another packet.

ElastiStore allocates the minimum of just one register (i.e., holding a sin-
gle flit) per VC, plus one additional register that is shared dynamically
between VCs, and enables full throughput of elastic operation using one
ready/valid handshake signal per VC. The static allocation of a single
buffer to each VC guarantees forward progress for all VCs and avoids
possible protocol-level deadlocks.

4.3 ElastiNoC Self Testability
As technology continues to scale and chips continue to grow, system
reliability and scalable Built-In Self-Test (BIST) architectures are gain-
ing significant importance. NoC testing has evolved over the recent

78

4.3. ElastiNoC Self Testability

years providing topology-agnostic and modular self-testing methodolo-
gies [65, 134]. The distributed structure of ElastiNoC does not match
well with traditional core-level BIST architectures [87]. Therefore, we
targeted the design of a new distributed BIST architecture that (a) reuses
as much as possible the hardware of ElastiNoC, (b) achieves high fault
coverage and fault localization at the MU level (detects which MU con-
tains a faulty node) and (c) completes NoC testing within a small num-
ber of test cycles. The last feature is critical when the NoC that reaches
all IP cores of the system is used as a test access mechanism for those
cores. In such cases, the sooner the NoC is tested, the sooner the testing
of the rest of the system can begin.

The self-testability features of ElastiNoC are applied at the MU level.
Our target is to test the two input ElastiStores of each MU, along with
the associated multiplexing and allocation logic, and capture the re-
sponses in the shared buffer of the output ElastiStore. To achieve this,
the shared buffers of the input ElastiStores should function as Test Pat-
tern Generators (TPGs) during testing, and specifically as Linear Feed-
back Shift Registers (LFSRs), so as to provide pseudorandom patterns to
the tested circuit. Furthermore, the shared buffer of the output ElastiS-
tore of the MU should act as a Multiple Input Signature Register (MISR),
in order to compact the responses. This organization, shown in Fig-
ure 4.5, allows us to reuse the flip-flops of the shared register of each
Elastistore and transform it into a Built-In Logic Block Observer (BILBO)
with small hardware overhead (a BILBO register combines the operation
of an LFSR, an MISR, and a shift register). Testing of a router’s MUs
that belong to the same switching level constitutes an independent test
phase. In the next test phase, where the previous and the next MU lev-
els are tested, the functionality of the shared buffers as LFSRs/MISRs is
inverted, since the output ElastiStores of the current level are the inputs
of the next, whereas the inputs of the current level are the outputs of the
previous one. A test phase can be applied simultaneously to all NoC
routers.

Allowing the shared buffers of the input and output Elastistores to
act as TPGs and response compactors respectively, requires some ad-
ditional test isolation logic that is enabled only during testing. The
Elastistores under test (input ElastiStores) are isolated using 2-to-1 mul-

79

4. Distributed VC-based Network-on-Chip Architecture

tiplexers that multiplex their data/control inputs with the outputs of
the shared buffers that act as LFSRs, as depicted in Figure 4.5. Dur-
ing testing (TestEnable=1) the bypass multiplexers of Elastistores get the
same value, and thus the outputs of the LFSRs propagate in the MU
irrespective of the value on the select lines of the bypass multiplexers.

Additionally, every other testing logic added should pay off in terms of
fault coverage. Data registers are easily testable since they are directly
accessible. The combinational logic of the MUs can be easily tested
as well. Testing gets complicated for the input/output VC state regis-
ters and the priority state of each round-robin arbiter that can be ac-
cessed and observed only implicitly. Our preliminary sequential ATPG
and fault-simulation experiments indicate that long test sequences with
top-off deterministic patterns cannot achieve anything more than just
moderate fault coverage. For that reason, we have chosen to adopt a
partial-scan approach, where the internal state registers shown in Fig-
ure 4.5 are put in scan chains (the tested circuit, as a whole, remains
sequential). This choice allowed for very high fault coverage with very
short, strictly pseudorandom, test sequences, without incurring signifi-
cant overhead, since the aforementioned scannable flip-flops are only a
small portion of the total flip-flops involved in a MU (the majority are
data registers).

During each test phase, multiple MUs are independently tested in par-
allel. For example, the 4× 4 router depicted in Figure 4.3 would have
been tested in three phases. The first phase utilizes the shared buffers of
the input Elastistores as TPGs and the shared buffers at the outputs of
the first-level of MUs as response compactors. Before testing starts, all
flip-flops of the tested circuits are reset. Due to the partial scan chain ar-
chitecture, the generation of a new pseudo-random test vector requires
a certain number of cycles (equal to the scan-chain length), so as to be
shifted in the scan chains. Then, 1 clock cycle is needed to put the MU in
normal mode and allow the circuit responses to be captured in the scan
chains. In the same clock cycle, normal MU outputs are fed and com-
pacted in the output MISR. Finally, the response captured in the scan
chains is shifted-out and compacted to the MISR as well. This last oper-
ation is overlapped with the scan shift-in of the next test vector. Thus,
the total number of clock cycles for generating, applying and compact-

80

4.4. Experimental Results

ing a test vector is equal to scan-chain length + 1 (the “+1” term is for the
capture cycle).

At the end of each test phase, a signature for all responses is stored in
each MISR. To verify the results of the test session, this signature needs
to be compared with the golden fault-free signature (computed off-line)
of the applied test vectors and produce a final error bit. This comparison
can be made serially, bit-by-bit, with a locally stored golden signature.

In the following two test phases, the intermediate ElastiStore shared
buffers change role from MISR to LFSR and test the last MUs and
their associated LRC logic, using exactly the same test sequence (the
responses are captured at the output ElastiStores). The last test phase
tests the output links that are connected to the inputs of the next routers
via the two ElastiStores present at their endpoints. Since these three test
phases can be applied simultaneously to all NoC routers, testing can
finish in a few thousand cycles, as shown in Section 4.4. Gathering the
error signals of each MU can be either done at the router level via a small
local test controller, or they could be sent via 1-bit pipelined links to a
centralized test controller. Depending on the number of pipeline stages
per router, and based on the fact that the even-numbered stages can be
tested independently from the odd-numbered ones, testing of ElastiNoC
requires a constant number of 2 or 3 test phases overall, which is inde-
pendent of the size of the network.

4.4 Experimental Results
In this section, we compare ElastiNoC with conventional VC-based ar-
chitectures, both in terms of network performance and hardware com-
plexity. We also report the fault coverage achieved by the proposed
distributed BIST architecture and the required test application time, and
we quantify the area/delay overhead of the self-testability features.

4.4.1 Hardware Complexity
The proposed ElastiNoC routers (using lookahead RC) were mapped
(synthesized) to an industrial low-power 45 nm standard-cell library
under worst-case conditions (0.8 V, 125 ◦C), using the Cadence digital

81

4. Distributed VC-based Network-on-Chip Architecture

20K

30K

40K

50K

60K

70K

80K

1000 1500 2000 2500 3000

A
re

a
 (

u
m

2
)

Delay (ps)

1-Stage Speculative 2VC

2-Stage Baseline 2VC

3-Stage Baseline 2VC

ElastiNoC 2VC

ElastiNoC-Optimized 2VC

50K

60K

70K

80K

90K

1000 1500 2000 2500 3000

A
re

a
 (

u
m

2
)

Delay (ps)

1-Stage Speculative 4VC

2-Stage Baseline 4VC

3-Stage Baseline 4VC

ElastiNoC 4VC

ElastiNoC-Optimized 4VC

(a) (b)

Figure 46: Hardware implementation results of various router designs with (a) 2 VCs, and
(b) 4 VCs per port.

implementation flow. The generic router models have been configured
to 5 input-output ports, as needed by a 2D mesh network, and to 2 and
4 VCs per port, while the flit width was set to 64 bits. Arbitration in
all routers follow the fast arbiter design of [31]. The area/delay curves
obtained for all designs - after constraining the logic-synthesis and back-
end tools, and the extraction of physical layout information (each output
is loaded with a wire of 2 mm) - are shown in Figure 4.6.

The routers under comparison for 2 and 4 VCs per port include an
ElastiNoC design with 2 MUs in series per router, a speculative 1-cycle
design that corresponds to the fastest monolithic design, as well as 2-
stage and 3-stage pipelined baseline router implementations. In both
cases (2 and 4 VCs), the proposed ElastiNoC design achieves the high-
est delay savings of 20% and 15% for 2 and 4 VCs, respectively, as com-
pared to the fastest 3-stage pipelined baseline router. Please keep in
mind that the delay numbers reported correspond to 0.8V operation,
which increases significantly the delay of the circuits. For example, a
close inspection of the clock frequency of ultra-fast 3-stage commer-
cial routers optimized at the transistor level [119], [140], which offers
additional benefits versus standard-cell-based design, reveals that their
frequency marginally passes 1 GHz when operated at 0.8V.

For all cases regarding state-of-the-art routers, we assumed the mini-
mum buffering requirement needed to cover the round-trip time im-
posed by their internal pipeline organization. The round-trip latency

82

4.4. Experimental Results

of a single-cycle router is three cycles, translating to three buffers per
VC, since each flit spends one cycle inside the router, one additional
cycle on the link in the forward direction, while the back-pressure sig-
nals (such as credit updates) need one cycle on the link to return. Thus,
the pipelined routers with two and three stages increase the round-trip
latency by one and two, respectively – unless, direct combinational flow-
control update paths are employed across routers, which limit the bene-
fits of pipelining. As a result, the 2- and 3-stage pipelined routers need
a minimum of four and five buffers per VC.

The amount of ElastiNoC buffering is between the buffers required for
a 2- and a 3-stage router. While ElastiNoC requires larger area than
monolithic routers for the case of 2 VCs, this trend changes in the case
of 4 VCs. In this case, under equal delay, the proposed routers and
especially the one that is optimized to the routing logic, depicted as
“ElastiNoC-Optimized” save significant amount of area when compared
to the 2- and the 3-stage routers, since it allows for both buffer and
logic removal. The power consumption of the routers under comparison
follows a similar trend.

Finally, we measured the hardware performance of ElastiNoC-Optimized
and assuming that the packets entering the network are not allowed to
change VC as done in [37]. This simplification saves more than 3% and
10% of the delay of ElastiNoC for 2 and 4 VCs per port, respectively, and
lowers its area footprint by 12% and 15%. The expected drawbacks of
such optimization are: (a) a reduction in throughput by increasing head-
of-line blocking per static VC, and (b) complications in implementing
adaptive routing.

4.4.2 Fault Coverage and Test Application Time
The synthesized MU netlists for 2 and 4 VCs were utilized for obtaining
the self-testability results. The Hope sequential fault-simulator [77] was
employed to compute the fault coverage (FC), while the LFSR TPG and
the MISR compaction operations were simulated using a custom tool.
The results of the proposed MU BIST approach are shown in Table 4.1.

Note that the exhibited FC has been calculated over all testable stuck-at
faults of a circuit. A small amount of the total faults of each exam-

83

4. Distributed VC-based Network-on-Chip Architecture

Table 41: Test coverage and test application results for a MU.
VCs Scan Scan Stuck-at Test Test Aliasing

FFs chains FC patterns cycles
2 24 6 99.93% 302 1510 0%
4 78 13 100% 1642 11494 0%

ined MU (approximately 1-1.5%) have been reported as untestable by
the Strategate sequential ATPG tool [52], and, as a result, they are not
included in FC calculation. No deterministic test patterns have been
used though for obtaining the reported results. The only purpose of
ATPG was to determine the untestable faults. As can be seen, the pro-
posed BIST approach achieves very high FC (complete in the case of 4
VCs) with quite short test sequences. The total NoC test time is network-
size independent and equal to 3 (test phases) × 1510 = 4530 clock cycles
for 2 VCs, and 3 × 11494 = 34482 cycles for 4 VCs. In these figures, a
few extra cycles should be added for signatures comparison and error
signal gathering. Our experiments showed that there is no FC penalty
when modifying the scan chains volume; more and shorter scan chains
can be used, when possible, for reducing test application time. Also, as
expected with such wide MISRs (64 bits + the volume of ready/valid
output signals), no aliasing was observed between the golden and the
faulty circuits signatures.

After including the needed testability structures described in Section 4.3
in ElastiNoC and resynthezing the resulting designs, we end up with
22% increase, on average, in the total area for a 5×5 router. The im-
pact on the delay is a slight 7% increase, as compared to an ElastiNoC
without any self-testability features. This area/delay overhead should
be treated as an investment that pays off its purpose by offering fine-
grained testability, and fault isolation at the MU level. Its cost can be
amortized by increasing the flit width and the number of VCs. This hap-
pens since the extra cost involves mostly the logic of the shared buffer
at each ElastiStore, which is constant irrespective of the number of VCs.

4.4.3 Network Performance
Network-performance comparisons were performed using a cycle-accu-
rate SystemC network simulator that models all micro-architectural com-

84

4.4. Experimental Results

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

A
v
e
ra

g
e
 P

a
c
k
e
t

L
a
te

n
c
y
 (

C
y
c
le

s
)

Load (Flits/Node/Cycle)

Base2Stages-2VC
Base2Stages-4VC
Base3Stages-2VC
Base3Stages-4VC

ElastiNoC-2VC
ElastiNoC-4VC

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
v
e
ra

g
e
 P

a
c
k
e
t

L
a
te

n
c
y
 (

C
y
c
le

s
)

Load (Flits/Node/Cycle)

Base2Stages-2VC
Base2Stages-4VC
Base3Stages-2VC
Base3Stages-4VC

ElastiNoC-2VC
ElastiNoC-4VC

(a) (b)

Figure 47: Latency vs. load curves for (a) uniform random traffic and (b) non-uniform
localized traffic. Network traffic from real applications is estimated to lie in-between these
two synthetic traffic patterns.

ponents of a NoC router, assuming an 8×8 2D mesh network with XY
dimension-ordered routing. The evaluation involves two synthetic traf-
fic patterns: Uniform Random (UR) and non-uniform Localized Traffic
(LT). We estimate that network traffic from real applications would lie
in-between these two synthetic traffic patterns. For LT traffic, we assume
that 75% of the overall traffic is local (i.e., the destination is one hop
away from the source), while the remaining 25% of the overall traffic is
uniform-randomly distributed to the non-local nodes. We experimented
with other distributions as well, but they all showed similar results. The
injected traffic consists of two types of packets to mimic realistic system
scenarios: 1-flit short packets (just like request packets in a CMP), and
longer 5-flit packets (just like response packets carrying a cache line).
For the latency-throughput analysis, we assume a bimodal distribution
of packets with 50% of the packets being short, 1-flit packets, and the
rest being long, 5-flit packets, in accordance to recent studies [83].

Figure 4.7 shows the latency-throughput curves as functions of the node
injection rate, for the two aforementioned synthetic traffic patterns, and
the same router configurations (in terms of numbers of supported VCs
and their pipeline structure) used in the hardware complexity analysis.
In all cases, the performance of the ElastiNoC routers is indistinguish-
able from the equivalent baseline routers, both at low and at high loads,
while in some cases the performance of ElastiNoC is, in fact, better. The
latency of the 3-stage pipelined router is higher, since it costs more cycles

85

4. Distributed VC-based Network-on-Chip Architecture

to traverse each router of the network. For the 2-stage pipelined solu-
tions that include ElastiNoC and the baseline router, keep in mind that
even if the reported latency in cycles is equal, in reality it corresponds
to different clock frequencies; ElastiNoC is at least 15% faster.

Multiple parallel physical elastic-buffer-based networks of simpler worm-
hole routers [89] (with each network mapped to one VC) would enjoy
slightly higher clock frequencies, due to the complete removal of any
VC allocation step. However, when compared with ElastiNoC routers
under equal network bisection bandwidth, multiple networks would suffer
in performance, as verified by our experiments, because of the high se-
rialization latency imposed by the narrower channels in each physical
network.

4.5 Conclusions
Virtual channels within NoC routers are quickly becoming a necessary
ingredient of modern NoCs, and are viewed as instrumental in enhanc-
ing performance and offering several network- and system-wide ser-
vices. In this thesis, we introduce the ElastiNoC architecture as the
first NoC design that offers: (a) distributed implementation for VCs,
including buffering, allocation, and necessary switching; (b) modular
pipelined organization; (c) same (or even better) network performance,
as compared to baseline monolithic VC-based architectures; and (d) a
scalable self-testing mechanism that enables fine-grained fault localiza-
tion (at the MU level) with small test application time.

86

Chapter 5

Multi-Bit Register Composition

5.1 Introduction
The NoC IP is physically distributed across all parts of the chip. This
distributed placement of a certain IP of the chip creates additional bur-
den to the clock tree that needs to drive its sequential elements. This
phenomenon is especially critical when considering NoC buffers with
very wide links. Multi-bit register (MBR) composition can reduce the
complexity of the clock tree by reducing the number of clock sinks, thus
shortening the clock tree’s wire length, which decreases the wire capac-
itance. By sharing clock circuitry within the cell, MBRs also present
a smaller pin capacitance load on the clock tree, compared to separate
single-bit registers. Not only does this reduce the clock switching power
at the leaf-level of the tree, but the reduced clock load allows a smaller
clock tree to be used, with fewer and smaller clock buffers, further re-
ducing the clock power. An example of the result of MBR composition
is shown in Figure 5.1, where the registers of the original design are
merged to fewer cells.

MBR composition must carefully select which registers to merge, to
maintain the correct function and scan-connectivity. It needs to avoid
degrading timing slack, wire-length, or routing congestion, while re-
ducing clock power.

The proposed balanced restructuring approach targets MBR composi-
tion, after global or detailed placement, with the goal to (a) minimize

87

5. Multi-Bit Register Composition

Figure 51: MBR composition reduces register count and simplifies clock tree synthesis by
grouping registers to larger multi-bit cells.

the total number of registers in a design, (b) reduce clock power, and (c)
simplify subsequent clock-tree synthesis (CTS). The proposed methodol-
ogy equally applies to circuits that initially have only single-bit registers,
or that are rich in MBRs identified earlier in the design flow.

MBR composition can be performed early in the flow, i.e., during logic
synthesis [51, 147, 150] for register power reduction. Although early
allocation of MBRs offers significant savings, it misses critical place-
ment and timing information that affect the final result. For this reason,
the majority of the work in MBR composition is focused on identifying
MBRs after global or detailed placement.

In those cases, compatible registers are identified and grouped in MBRs
with the goal of minimizing any wire length increase, timing degra-
dation, and/or routing congestion [64, 60, 142, 131, 80, 139]. In most
cases, the initial designs have only single-bit registers and do not con-
sider any function or library limitations, which are standard restrictions
in industrial designs. The composed MBRs are either limited to small
sizes of 2 or 4, bits or they move to excessive sizes of up to 16 or 64 bits.
In reality, quite a few of the registers may have no logically equivalent
multi-bit version, or they may have been specified as fixed or size-only
by the designer, and thus cannot be composed to MBRs. The main
difference across the various approaches is the clustering or grouping

88

5.1. Introduction

algorithm employed (clique partitioning, analytical or k-means cluster-
ing, force-driven bonding), and the selection of the placement window
within which to search for compatible registers.

MBR composition has been also applied during placement, taking into
account the effect of clock tree latency [79]. The late application of MBR
composition narrows the design space to identify candidate MBRs. Each
new choice requires incremental legalization and clock tree rebuilds,
which results in long runtimes and can cause timing hotspots with the
disturbance of the clock sink points.

Basic methods for MBR composition have been enriched with other fea-
tures, such as the optimization of clock gating logic [81], data-driven
clock gating [144], and crosstalk avoidance [53]. Recently, MBR compo-
sition has been extended to satisfy multi-mode multi-corner timing con-
straints, where the compatibility of registers is differentiated per mode
of operation [78].

Even if registers are not replaced by MBRs their physical clustering can
simplify the clock tree and reduce the buffering needed in the clock tree.
In these cases, register banks are created in the layout after clustering
nearby registers [95, 130, 145], with the goal being to create balanced
clusters and minimize register displacement from its original position to
the new position in the register bank.

In this work, MBR composition follows strict rules for identifying com-
patible registers that can be merged to MBRs. Candidate registers should
be compatible in terms of functionality, timing, placement, and scan con-
nectivity. Also, the registers replaced by a MBR should exhibit similar
input/output slacks, thus enabling the application of the same useful
clock skew after CTS.

To increase the possibility of identifying compatible registers and avoid-
ing any timing incompatibilities, selected MBRs of the original circuit
are decomposed and optimized, to facilitate higher quality MBR gener-
ation later in the flow. MBR composition uses a new weighted integer
linear programming (ILP) formulation that offers significant reduction
in the total number of registers with reasonable runtime. The weights
assigned to each MBR candidate correspond to new simplified physical
constraints that facilitate MBR detailed placement.

89

5. Multi-Bit Register Composition

During MBR allocation, we allow incomplete MBRs, where some D/Q
pin pairs are left tied-off/disconnected. This reduces register count,
while later in the flow some of the unconnected pins are connected using
an extra recovery step. After MBR composition, timing-driven MBR
downsizing allows us to save additional clock pin capacitance. This
further reduces the clock trees power consumption.

5.2 Overall Flow and Goals
MBR composition forms MBRs by grouping either single-bit flip flops
or latches, or already existing MBRs composed during logic synthesis.
The goal is to create larger MBRs, reducing the register count and sim-
plifying the clock tree.

5.2.1 Goals of the MBR Composition Flow
When two or more registers are selected for merging, they are removed
from the netlist and their nets are reconnected to the new MBR. The
placement of the new MBR determines the wire length of the recon-
nected nets, and if not chosen appropriately, may cause timing viola-
tions. The candidate registers should have sufficient positive D/Q pin
slack to allow them to reconnect to the newly formed MBR without in-
troducing or increasing timing violations.

Any pre-existing MBR, or any newly formed one, should include pins
that have similar input D-pin slacks and similar output Q-pin slacks. If
the pins of one bit of a MBR have positive D/negative Q slack, and the
pins of another bit exhibit negative D/positive Q slack, then those pins
contradict possible useful clock skew assignment to the MBR. For ex-
ample, considering the setup constraints, the pin with negative D slack
favors a later clock arrival time, while the pin with negative Q slack
prefers an earlier arrival [33].

Such cases of timing slack incompatibility should be avoided, either by
disallowing candidate registers with incompatible timing profiles to be
merged, or by decomposing existing MBRs with such characteristics to
smaller MBRs. The pins assigned to each decomposed register (single-
or multi-bit) can then be grouped according to their timing slack profile.

90

5.2. Overall Flow and Goals

Additionally, routing congestion that may arise after MBR composi-
tion should not be overlooked. The generation of large MBRs brings
many wires in the same region, thus possibly creating routing conges-
tion problems in very dense placements. Given this, the availability of
space and wiring resources should not be left as an afterthought, but
should be included during MBR selection, mapping, and placement.

5.2.2 The Flow for MBR Composition

Figure 52: The proposed MBR composition flow follows a balanced restructuring approach
that reduces the complexity of clock tree synthesis (CTS) without degrading timing, wire-
length and routing congestion.

The proposed flow for MBR composition is depicted in Figure 5.2. Af-
ter the initial placement and optimization, MBRs that have bits with
positive D/negative Q slack, and other bits with negative D/positive Q
slack, are decomposed to smaller MBRs or single-bit registers. Each of
the resulting registers should contain bits with the same timing slack
profile. In our example, all single-bit registers are upsized, thus increas-
ing the probability of producing more efficient MBR mappings later.

91

5. Multi-Bit Register Composition

The resulting circuit is then passed to the core of MBR composition.
Compatible registers are identified, merged to new MBRs, and appropri-
ately placed, ensuring that the impact on datapath timing, wire length,
and routing congestion does not offset benefits of a lighter clock tree.

The composition flow permits the generation of incomplete MBRs, where
some D/Q pin pairs are left tied-off/disconnected. Incomplete MBRs
tackle the MBR bit-width granularity limitations in typical standard cell
libraries, and help reduce register count. We ensure that the merging to
incomplete MBRs does not negatively affect the area or leakage power.
Although incomplete MBRs are used during MBR composition, they
nearly all disappear after a final recovery step at the end of the flow.

Once MBR composition finishes, the MBRs are passed through a se-
quence of post-processing optimization steps that improve the overall
result and simplify the clock tree synthesis that follows. The first step in-
volves MBR downsizing, with the goal of reducing MBR area and clock
pin capacitance without degrading timing. The circuit is then legalized
to fix any placement violations produced during MBR composition, and
redistribute the white space produced by the registers replaced by a
MBR. On the legalized circuit, we perform one final optimization step
that tries to use as many as possible of the incomplete MBRs pins by
redistributing and reconnecting available nets from nearby registers.

5.3 MBR Decomposition and Optimization
Every MBR of the design that contains pins with different timing pro-
files is decomposed to registers of smaller bit-width. (Namely, for each
MBR where a bits input-D/output-Q pins have positive D/negative Q
slack, and another bits pins exhibit negative D/positive Q slack.) After
decomposition, each one of the new registers can be either a single-bit
register or an MBR, and includes pins with exactly the same timing pro-
file.

During decomposition, we try to minimize the number of decomposed
registers. For example, assume the case of an 8-bit MBR shown in Fig-
ure 5.3, where 5 pins exhibit positive D/positive Q slack, two pins neg-
ative D/positive Q slack and one pin positive D/negative Q slack. Ac-

92

5.3. MBR Decomposition and Optimization

Figure 53: MBR decomposition of an 8-bit MBR with timing incompatible pins. Decom-
position leads to four new registers either MBRs or single-bit registers that are placed in the
position of the original MBR. In this example, the 8- and 4-bit MBRs are assumed to be
two-row cells.

cording to Fig. 5.3, the 8-bit MBR that is implemented as a two-row
cell, is decomposed to (a) one 4-bit MBR and a single-bit register for the
five bits with positive D/positive Q slack, (b) a 2-bit MBR for the two
bits with negative D/positive Q slack, and (c) one additional single-bit
register for the bit with positive D/negative Q slack.

Inside each group, e.g., the group of five pins with positive D/positive Q
slack, the separation to MBRs is done according to the available MBRs in
the standard cell library and the Q slack of each pin. The pins are sorted
according to their Q slack and then they are assigned in this order to
the largest available MBR of the library. In this way, the pins with large
values of Q slack are separated from the ones with less slack. Note that
incomplete MBRs are not allowed in this step.

The new derived cells are placed temporarily at the position of the origi-
nal MBR, while any useful clock skew properties applied by the designer
on the original MBRs are transferred as is to each one of the decomposed
cells.

After decomposition, the derived cells can be merged with other com-
patible registers producing more favorable MBR mappings. The total
register count of the design is initially increased by MBR decomposi-
tion, but the final number of registers is significantly reduced relative to
the original design.

93

5. Multi-Bit Register Composition

After decomposition, we upsize to maximum size all the single-bit reg-
isters with negative Q slack. This improves their output-Q pin timing,
which increases the probability of merging with other nearby registers
during MBR composition, as detailed in Section 5.4. This upsizing only
minimally affects the timing slack on the input D pin of the register, as
verified by the experimental results.

On the other hand, upsizing the single-bit registers increases their clock
pin capacitance. This overhead will later disappear, as those registers
will likely be replaced by larger MBRs with less total clock pin capaci-
tance than that of the original registers.

MBRs are not upsized at this stage, irrespective of their timing. As veri-
fied experimentally, the extra timing benefit that we would earn by up-
sizing MBRs at this stage does not pay off in reducing the total register
count, or the total clock pin capacitance at the end of the flow.

5.4 MBR Composition
Even if a group of registers has an equivalent MBR in the library to re-
place them, they cannot be arbitrarily merged to new and larger MBRs.
A group of registers can be merged to a larger MBR only if the regis-
ters are compatible in terms of functionality, scan chain organization,
placement, timing profile, and drive strength.

Once the compatible registers are determined, an ILP-based optimiza-
tion is formulated that selects which registers should be merged to
MBRs. At this step, incomplete MBRs are considered as valid MBR
candidates. The weight assigned to each MBR candidate corresponds to
new simplified physical constraints that facilitate MBR placement legal-
ization. Once the MBR candidates have been selected, they are mapped
to specific library cells and placed after taking into account the position
of the replaced cells and the wire-length.

5.4.1 Compatibility Checks
Registers can be merged to a new MBR only if there is one in the li-
brary with equivalent functionality. For example, a register with a reset
pin can be replaced only if an MBR with a reset pin is in the library.

94

5.4. MBR Composition

Similarly, scan flip-flops can be replaced only if scan-enabled multi-bit
versions are available. Quite a few registers may have no logically equiv-
alent multi-bit version, or they may have been specified as fixed or size-
only by the designer, and thus cannot be composed to MBRs.

Registers are functionally compatible when they share exactly the same
control pins, including clock and clock gating conditions. Many papers
erroneously assume that any registers in the netlist are functionally com-
patible, maximizing the opportunities for MBR composition, but this is
far from true for real industrial designs.

Scan compatibility dictates which registers are compatible, based on the
scan chain definitions. Registers must be in the same scan partition,
i.e., allowed on the same chain. MBRs may either have a single scan-
in and scan-out pin, or multiple independent scan in/out pins. (The
scan enable pin is still shared). In the first case, if the scan pins belong
to the same scan partition then moving scan pins across different scan
chains is allowed, and no additional constraints are imposed because of
the scan chain definitions. However, for registers that belong to ordered
scan chain sections, they may only be composed to a single MBR with an
internal scan chain that preserves the same scan order within the MBR.
In the second case, where MBR cells with separate scan pins per D/Q
pair are used for composition, no restrictions are imposed as several
scan chains with different constraints can cross the same MBR providing
they have a common scan enable signal.

In the following steps, registers are checked for placement compatibility.
For each register, a timing-feasible placement region is identified by trans-
forming the positive timing slack of the input D and output Q pins to an
equivalent distance that it can move without causing a timing violation.

Each register input (output) slack value defines a diamond. At the cen-
ter of the diamond is the fanin (fanout) gate and its half diagonal is the
equivalent distance. An example of the timing feasible region of a regis-
ter is shown in Figure 5.4(a). We used Elmore delay for the timing slack
to equivalent distance calculation similar to [78, 18].

Registers are compatible with respect to placement if their timing feasi-
ble regions overlap, as shown in Figure 5.4(b). The placement compat-
ibility is checked on a global or detail placed design to give a realistic

95

5. Multi-Bit Register Composition

Figure 54: (a) An example of the formulation of timing feasible region (TFR) of a single bit
register. (b) Two registers that their TFRs overlap and thus can be considered placement
compatible.

sense of the relative placement of the registers under consideration for
merging.

If the timing slack is negative, the feasible region is limited to the in-
tersection of the bounding boxes of the violating pins with the feasible
regions of the rest of the D and Q pins of the same cell. Even if a nega-
tive slack does not permit the cell to move, it is not left out of placement
compatibility checking, as it has a timing feasible region that matches
its footprint, to which other registers with positive slack can possibly
move.

Next, timing compatibility is checked, to avoid merging cells that have
positive D/negative Q slack with cells that exhibit negative D/positive
Q slack. At this point, due to MBR decomposition, there is no MBR with
such contradictory timing slacks. With this additional check, we ensure
that we wont create new MBRs with this undesirable characteristic.

Even if the D/Q slack signs of two cells are the same, timing compatibil-
ity is preserved only if the magnitude of the observed slacks is similar.
We should not merge registers with a large difference in timing critical-
ity, because it increases power when a timing critical signal forces the
MBR to be upsized, unnecessarily for the other signals. We must avoid

96

5.4. MBR Composition

very different clock useful skew values, as only one can be realized for
a given MBR, and the difference degrades useful skew opportunities for
other timing paths to/from the MBR.

Finally, the last check is drive-strength compatibility. Two or more registers
are considered compatible if their drive resistance differs by less than
3%. For drive resistance we refer to a linear model approximation of the
registers delay as drive resistance multiplied by load capacitance, with
some additional fixed “intrinsic” delay in the register. A cell with low
drive resistance can drive more capacitance with less delay. In practice,
we use accurate CCS standard cell library timing models.

We need to avoid merging a high drive-strength cell with a low drive
strength cell. If this happens, then the derived MBR should be of high
drive strength in order not to degrade timing (implicitly the low-drive
strength register is upsized when merged in the new MBR). However,
this would increase significantly the MBRs area and power. By charac-
terizing two registers with different drive strengths as incompatible we
avoid such inefficient outcome

The only case that two registers are considered compatible, even if their
drive strengths differ, is when a high-drive strength register is not timing
critical (it has a lot of output-Q pin slack). In this case, when multiple
registers are merged to a new MBR, the MBR can use the lower drive
strength of the registers it came from. The high drive strength registers
that participate in the new MBR are implicitly downsized, thus relin-
quishing some of their available slack.

5.4.2 MBR Candidate Enumeration and Incomplete MBRs
The compatible registers of the design are represented by the compati-
bility graph G. The graph nodes are the registers, whether single bit or
pre-existing MBRs, and the edges of G reflect the compatibility between
them, as shown in Figure 5.5(a).

A MBR can only be formed from registers that are all compatible with
each other. Therefore, the registers that can be merged to a new MBR
form a clique in G. For instance, the 4-node clique {A, B, C, D} and the
3-node clique {B, C, F} can each be mapped to a 4-bit MBR. By enumer-

97

5. Multi-Bit Register Composition

(a) (b)

Figure 55: (a) A compatibility graph of six registers, comprising ten bits in total. The
compatible registers (nodes of the graph) are connected with an edge. Each register has a
name and a size: A1 is a single-bit register; F2 is a 2-bit register; and E4 is a 4-bit MBR
inserted during logic synthesis. (b) The possible groups for MBRs after clique enumeration.

ating all the cliques of G, we determine the set of candidate MBRs to
consider during MBR composition.

During clique enumeration, a clique is considered valid if the number
of register bits matches the size of at least one MBR in the cell library.
For example, for a cell library that consists of 1, 2, 3, 4, and 8-bit MBRs,
the 3-node clique {A, C, E} that involves 6 register bits is invalid, since
a 6-bit MBR is not available in the library. The clique {A, C, E} is valid
if it is allowed to map to an 8-bit MBR, which would be incomplete as
only 6 out of the 8 D/Q bits are connected.

The table in Figure 5.5(b) lists all cliques for the compatibility graph of
Figure 5.5(a), and the different bit widths of MBR cells that can be used
for their mapping. Cliques {A, E} and {A, E, C} need 5 or 6-bit MBRs
that are not available, but they can be mapped to an 8-bit MBR leaving
some pins unconnected.

Incomplete MBRs may seem a waste of area and leakage power, but it
can be advantageous as MBRs share the register control pins and associ-
ated logic. For example, replacing 7 single-bit registers, with 7 reset and
7 clock connections, with an 8-bit MBR that uses one reset and one clock
wire saves 12 wire segments, even if one D/Q pin pair out of 8 is dis-
connected. However, MBRs with internal scan may not be suitable for
this at the least, the first bit scan-input pin and the last bit scan-output
pin must be connected to a scan chain.

98

5.4. MBR Composition

Allowing incomplete MBR cells gives additional freedom to the MBR
composition to minimize the number of registers. To keep the area and
leakage overhead under control, we only consider an incomplete MBR as
a valid candidate for MBR composition, when the area of the incomplete
MBR does not exceed the area of the replaced registers multiplied by a
selected overhead-allowance factor. Even if incomplete MBRs are used
at this stage, the majority of them are fully utilized at the end of the
flow, by reconnecting nets of nearby registers to the empty pins of the
incomplete MBRs.

To enumerate all cliques of G, we first enumerate all maximal cliques of
G using the Bron-Kerbosch algorithm [11]. For each maximal clique,
we enumerate all the valid sub-cliques for the permitted bit widths per
the MBR library cells using a dynamic programming approach.

The runtime complexity of maximal clique enumeration is O(3
n
3). This

is not computationally tractable for large graphs.

Hence, G is partitioned to a set of connected components which are
further decomposed to a set of sub-graphs using k-means clustering.
The partitioning is driven by the register clock pin positions to maximize
the clock tree power reduction achieved by MBR composition. Each
sub-graph cannot exceed 30 nodes. Trying smaller bounds resulted in
significantly more registers (less composition), especially with a bound
of fewer than 20 nodes. Increasing the bound above 30 did not help, as
the slight improvement cost too much additional runtime.

5.4.3 ILP Formulation
Clique enumeration defines the set M = {M0, M1, ..., Mk} of valid MBR
candidates. A register of the original design may participate in var-
ious MBR candidates. This attribute is declared via binary variables
aij ∈ {0, 1}, where aij = 1 if cell j participates to MBR candidate Mi,
otherwise aij = 0. To identify which candidate MBRs are selected from
among the MBR candidates, we add a binary variable xi ∈ {0, 1}; xi = 1
when MBR Mi is assigned to replace the constituent compatible regis-
ters, else xi = 0. When the register j is grouped in MBR Mi, and the
corresponding MBR is selected, then both xi and aij should equal one.
The total number of registers is minimized by solving the following in-

99

5. Multi-Bit Register Composition

teger linear program:

minimize
|M|

∑
i=1

wixi

subject to ∀ register j :
|M|

∑
i=1

aijxi = 1, aij, xi ∈ {0, 1}

The constraint added for each register j guarantees that each register
will be part of only one MBR. The cost function of the ILP does not treat
all MBR candidates equally. Each candidate MBR Mi is associated with
a weight wi; the smaller the weight wi, the more favorable the choice of Mi.

5.4.4 Weights to Limit Wire-length and Congestion
MBRs, due to their multiple input and output pins, lead to wire con-
centration, increasing the possibility of local routing overutilization. To
avoid this, we aim to spread the routing demand to nearby regions
by penalizing (with appropriate weights) the composition of new large
MBRs very close to other already formed MBRs. In this way, we implic-
itly handle the possible increase in routing congestion after MBR com-
position. Considering routing congestion explicitly in the ILP would
require the addition of a routing utilization model or more constraints.
However, our experimental results in Section 5.6 show that the weight-
ing heuristic chosen to handle the MBR-specific routing demand is ade-
quate for achieving our goal without increasing the initial routing con-
gestion.

The weight assigned to each candidate MBR is based on the relative
placement of the compatible registers that will be merged to this MBR.
The most favourable MBR candidate, which receives the lowest weight, is
one that avoids any other closely-placed compatible registers that do not par-
ticipate in the clique and could belong in another composed MBR. This
limits the probability that the nets of the two new MBRs cross each other,
keeping routing utilization under control.

For each MBR candidate, we define a polygon formed by the corners of
the participating registers. We compute the convex hull formed by the
outer corners of those registers.

100

5.4. MBR Composition

Figure 5.6 illustrates the test polygon that corresponds to the 4-node
clique {A, B, C, D} or the 3-node clique {A, B, C}, which produce re-
spectively a 4-bit and a 3-bit MBR candidate. All registers of the {A, B, C, D}
clique are part of the test polygon and no other compatible register lies
in the same region, so this choice is the most favorable and receives the
minimum weight. The 4-bit MBR candidate has a clear area to be placed
physically separate from any other MBR. The empty space, which will
be available after removing the participating compatible cells, roughly
defines the room to place the MBR. Even though this white space is not
contiguous as required to place the MBR, placement legalization is sim-
plified because no other register will be placed in the same area. It also
reduces the displacement of non-register cells that exist in the same area
registers are larger and often have higher placement priority, so smaller
movement of fewer registers helps minimize the placement disturbance.

Figure 56: This shows the initial placement of registers in the Figure 5.5 compatibility graph.
The size of each register corresponds roughly to its bit width (number of D and number of
Q pins). To improve routability after mapping to MBRs, we check inside the surrounding
polygon of the clique for the presence of other register. The fewer intervening registers, the
more favorable the candidate MBR.

For the composition of a 3-bit MBR from {A, B, C}, we observe in Fig-
ure 5.6 that the polygon defined by the corners of A, B, and C includes
register D. The composition of this 3-bit MBR is less favorable since
register D may end up merging with another MBR that will be closely
placed with the 3-bit MBR and increase locally the utilization of the
routing resources.

By weighting appropriately each candidate MBR Mi, we promote the

101

5. Multi-Bit Register Composition

composition of large MBRs, when the region defined by the constituent
compatible registers is clean of other registers. When there are many
intervening registers, we promote the selection of smaller, but clean,
MBRs. This is achieved with a heuristic weight wi for each candidate
MBR Mi as follows:

wi =

1
bi

, ni = 0

bi2ni , 0 < ni < bi

∞, ni ≥ bi

bi is the number of bits of the registers that will be merged to MBR Mi,
and ni is the number of other registers that block the convex polygon de-
fined by the outermost corners of the registers replaced by Mi. To favour
merging of registers, a weight of 1 is assigned to existing registers.

A register is a blocking register for Mi if its center is inside the corre-
sponding test polygon and it is not a constituent register of Mi. For the
example shown in Fig. 5.5, clique {A, B, D} has {bi, ni} = {3, 0} ⇒ wi =

1/3 since it is not blocked by any other register in Fig. 5.6, whereas, the
clique {A, B, C} has {bi, ni} = {3, 1} ⇒ wi = 6 as the center of D is
inside the polygon defined by the outmost corners of {A, B, C}.

When the test polygon for each candidate Mi is free of any other reg-
isters, the weight promotes the selection of larger MBRs. For instance,
the weight of a clean 8-bit MBR is 1

8 , which is smaller than the weight
of two clean 4-bit MBRs, i.e., 1

4 +
1
4 , needed to cover the same number of

bits.

When there are obstacle registers the selection of large MBRs is penal-
ized relative to the selection of more smaller MBRs. Large MBRs reduce
the register count but can create routability problems when placed close
to other MBRs and their large area can significantly increase the place-
ment difficulty. Assume for example the case of an 8-bit MBR candi-
date that has one obstacle register, i.e., {bi, ni} = {8, 1}. In this case,
the weight of this candidate would be wi = 16. The equivalent choice
with two smaller 4-bit MBRs would be to have one clean MBR with
{bi, ni} = {4, 0} ⇒ wi = 1/4, and another 4-bit MBR that includes the
intervening register, {bj, nj} = {4, 1} ⇒ wj = 8. The total cost of the
second option would be equal to 8.25 that would make the ILP select

102

5.4. MBR Composition

the two 4-bit MBRs relative to the one 8-bit MBR. It is more likely that
the two 4-bit MBRs can be placed with reduced competition for rout-
ing resources with the intervening register. Large MBRs may reduce the
register count but can create routability problems when placed close to
other MBRs, and, their large area can increase the placement difficulty
[19]. In future work, we plan to explore the possibility that instead of
penalizing the MBR candidates with obstacle registers through an in-
creased weight, to completely remove them from the candidate list.

Figure 57: The weights of the candidate MBRs and the selected solution. The 5-bit and
6-bit MBRs can be mapped only to an 8-bit incomplete MBR.

Figure 5.7 summarizes the weights for the MBR candidates of the com-
patibility graph of Figure 5.5, with placement per Figure 5.6. When no
incomplete MBRs are allowed, cliques {B, F} and {A, C, D} are mapped
to 3-bit MBRs, while cell E is kept separate. This solution reduces the
initial six registers to three. When incomplete MBRs are allowed, the
same final register count is achieved with a different final outcome. Both
choices in Fig 5.7 minimize the ILP cost function, and allow the three fi-
nal MBRs to be placed in distinct regions without intersecting each other.

103

5. Multi-Bit Register Composition

Before placement legalization, the composed MBRs may overlap with
other non-register cells in the region, but the weights assigned to each
candidate reduce the chance of overlapping with neighbouring MBRs.
This example highlights the option of incomplete MBRs. In practice, the
incomplete register AE will be rejected, as its area is significantly larger
than the area of the registers it replaces.

Candidate MBRs involve both the initial registers of the design and the
ones derived after MBR decomposition. As described in Section 5.3,
the MBRs resulting after decomposition are placed at the position of the
decomposed MBR. This initial placement decision does not limit the cre-
ation of large MBRs, as verified experimentally, since the test polygon
for every candidate clique/MBR covers only compatible registers. The
decomposed MBRs lead to some compatible registers and some incom-
patible ones (this is the reason why we decomposed in the first place).
So the incompatible ones do not block the formation of larger cliques.

5.4.5 MBR Mapping
The ILP selects candidate MBRs that minimize the total number of regis-
ters and are less intertwined in the layout. For each MBR, the ILP selects
just its bit width and the functional class of cells to which it belongs.
Two further steps are needed for MBR assignment: MBR mapping and
placement.

We must map the assigned MBR to a specific library cell. From the
functional compatibility checks performed earlier, we know there is a
compatible MBR in the library. From the available MBRs, we should
select the one that best fits the timing and the drive strength profiles of
the registers that it replaces.

The drive strength of the selected MBR should match the maximum
drive strength of the registers that will be replaced by the MBR. This
avoids degrading the timing of the design, but may incur an area and
power overhead. However, since the registers to be merged are already
drive strength compatible, the area overhead is avoided.

Registers with a high drive strength but a large timing slack (checked
during drive-strength compatibility) dont determine the drive strength

104

5.4. MBR Composition

of the new MBR. In this manner, those registers are implicitly downsized
and their slack is reduced.

Any extra area paid depends on the difference of the drive strength be-
tween the composed registers versus how many control pins are shared
by the MBR. To minimize clock power, we select the MBR with the low-
est pin capacitance from the MBR library cells that closely match the
drive strength of the registers to be replaced by the MBR. Due to the
large variety of MBR cells in modern libraries, if the drive strength and
the clock pin capacitance are not appropriately selected, they may cancel
the benefits of MBR composition by creating significant timing problems
or diminishing the clock tree power reduction.

MBR mapping also ensures that the scan chain definitions encoded as
scan compatibility constraints are preserved with the lowest possible
cost. MBRs with multiple scan in/out pins may seem attractive as their
area and power are lower than their counterparts with internal scan.
In reality, MBRs with multiple scan in/out pins incur the extra routing
resource cost of the external scan chain connectivity. For this reason,
MBR library cells with external scan chains are avoided during MBR
selectionthey are typically selected only when there is no other alterna-
tive, or for mapping registers that are non- consecutive and belong to an
ordered scan section.

5.4.6 MBR Connection and Placement
After mapping to the assigned MBR, we need to determine a location
for the new cell and connect the input and output nets of the MBR to
the many available pins.

We first assign nets to pins of the MBR. We topologically sort the re-
placed cells by their horizontal position, and connect the pins of the
leftmost cell to the leftmost bit of the MBR. If these are registers on an
ordered scan chain, the order of pin assignment is dictated by the scan
order.

The new MBR is placed in the position that minimizes the length of
the wires connected to its D and Q pins. To identify the best location,
we use a linear programming (LP) approach. For each D/Q pin of the
replaced registers, we identify their fan-in and fan-out pins to which

105

5. Multi-Bit Register Composition

the MBR will connect, respecting the connectivity of the original regis-
ters. For all the identified pins, we create a bounding box and reference
each pin’s coordinate relative to the MBR’s lower left corner plus some
offset (dxi, dyi) for the pins location on the cell. The lower left (x, y)
coordinates of the MBR are the variables to be determined by the LP.
For the bounding box that corresponds to the input or output connec-
tions of each pin i, we use the half-perimeter wire-length to estimate the
wire-length of the new wires. For each bounding box, the approximate
wire-length wli is

wli = (max(xh, x + dxi)−min(xl, x + dxi)) +

(max(yh, y + dyi)−min(yl, y + dyi)) ,

where (xh, xl, yh, yl) are the coordinates of the box boundaries for each
pin, and (x, y) are the coordinates of the MBR’s corner. We use a linear
program to minimize the wire-length of the D/Q pins of the MBR as
follows:

minimize
|M|

∑
i=1

wli

subject to (x, y) ∈ MBR’s timing feasible region

The max and min functions in the objective are removed by the use of
extra helper variables. For example, max(xh, x + dxi) is transformed to
two inequality constraints xh ≤ z and x + dxi ≤ z, while the opposite
inequality is used for the min function.

Every new MBR replaces the set of merged registers, and its placement
reuses the space freed by them. The drive strength compatibility check
ensures that the area of the replaced cells is enough to contain the area
of the larger composed MBR. However, the reorganization of this freed
space for placing the new MBR causes the rest of the pre-placed gates
in the same region to move slightly. As we verified experimentally, the
legalization step that follows MBR placement, along with the incremen-
tal timing-driven optimization performed by default after legalization,
manages to handle the movement of the rest of the gates without any
true disturbance to timing, while preserving the desired wire length re-
duction.

106

5.5. Post MBR Composition Steps

5.5 Post MBR Composition Steps
After MBR composition, there are two further optimizations. As shown
in Figure 5.2, these are MBR downsizing and the recovery of incomplete
MBRs, with placement legalization in between. Downsizing reduces the
clock pin capacitance and the area of the MBRs by sizing them down to
the point that does not degrade timing. Recovery of incomplete MBRs
better utilizes the unused pins of incomplete MBRs by locally merging
compatible MBRs with incomplete MBRs.

5.5.1 MBR Downsizing
During MBR mapping, we selected for each new MBR the library cell
that best matched the drive strength of the replaced registers, with-
out performing any additional optimization that would trade-off timing
slack with MBR area and clock pin capacitance. However, based on the
timing profile of each register, significant clock pin capacitance and area
can be saved by downsizing the non-timing critical MBR cells.

Algorithm 1 MBR downsizing
1: foreach register ∈ MBRs do
2: prevTNS← TNS; prevWNS←WNS;
3: while register is downsizable do
4: Downsize register;
5: Run Incremental STA;
6: if prevTNS ≤ TNS && prevWNS ≤WNS then
7: prevTNS← TNS; prevWNS←WNS;
8: else
9: Undo downsize; Break;

10: end if
11: end while
12: end for

Downsizing the MBRs uses a brute-force approach, avoiding violating
either the Total Negative Slack (TNS) or the Worst Negative Slack (WNS)
of the design, shown in Algorithm 1.

For each MBR, we find the set of equivalent library cells. The cells are
sorted in descending order based on their drive strength. We test the

107

5. Multi-Bit Register Composition

cells with lower drive strength than the examined MBR. The MBR is
down-sizable if there is at least one more cell with size smaller than the
examined MBR that has not been tested yet. After every downsize, the
TNS and the WNS generated by this change must not be worse than the
TNS and WNS using the previous gate size. We stop searching when
the MBR resize degrades TNS and WNS, in which case we keep the size
from the previous round.

5.5.2 Recovery of the Unused Pins of Incomplete MBRs
After the placement has been legalized, we identify local compatible
registers that can be merged with the incomplete MBRs to better utilize
their disconnected pins. For example, if an 8-bit incomplete MBR with
one empty bit is next to a compatible single-bit register, we can remove
the single-bit register and connect its nets to the pins of the empty bit of
the 8-bit MBR. This reduces both the number of incomplete MBRs and
the total number of registers.

Algorithm 2 Recovery of incomplete MBRs
1: foreach register ∈ IncompleteMBRs do
2: pins← NumberOfUnusedPins(register);
3: nearbyRegs← Registers inside fixed size window;
4: foreach s ∈ nearbyRegs do
5: if !isCompatible(s, register) || NumberOfPins(s) > pins then
6: Remove s from nearbyRegs;
7: end if
8: end for
9: Sort nearbyRegs based on number of pins;

10: foreach s ∈ nearbyRegs do
11: if NumberOfPins(s) ≤ pins then
12: Connect Nets(s) to the unused pins of register;
13: pins← pins NumberOfPins(s);
14: Remove s from the design;
15: if pins == 0 then Break;
16: end if
17: end for
18: end for

The steps in the recovery of incomplete MBRs are shown in Algorithm 2.

108

5.6. Experimental Results

At first, we find all the MBRs that have unconnected pins. For each
incomplete MBR, we find all the compatible registers that are placed
inside a small window around it. We consider only registers with bit
width less than the empty pins of the incomplete MBR. In this way, we
dont need to break down existing MBRs to reuse their pins; we can just
reconnect the nets of the smaller nearby registers.

All candidate registers are sorted in descending order based on their
number of pins. If two registers have the same number of pins, the
register that is closer to the MBR is ordered first. Next, while there are
empty pins in the examined MBR, we check if we can completely remove
a nearby compatible register and connect its nets to the unconnected
pins of the MBR. If all pins of the MBR are connected, we stop the
procedure and move to the next incomplete MBR. Note that incomplete
MBRs may still remain after checking all the nearby registers.

5.6 Experimental Results
The MBR composition methodology has been tested on six industrial
benchmarks that are rich in MBRs after logic synthesis. Designs D1-
D5 correspond to implementations at 28nm, while D6 is implemented
in a 16nm process technology. The industrial designs used represent
real use cases that were actually taped out. In all cases, the designs
were optimized both in terms of physical layout density and timing.
On average, the designs achieve an 80% layout density; above that, the
designs are unroutable.

Our methodology aims to reduce the register count and clock tree ca-
pacitance, with only marginal disturbance to timing, wire length, and
routing congestion. Before presenting the overall results for all designs,
we would like to focus on two distinct cases that highlight how the pro-
posed MBR composition flow performs under different scenarios. Two
clock nets were selected in a placed design and CTS was performed on
them, with and without the application of the proposed MBR composi-
tion flow. MBR composition was applied only on the registers driven by
those clock nets.

The first case (Case A) is a clock net that drives 3571 registers, which

109

5. Multi-Bit Register Composition

are mostly single-bit registers. This example shows the efficiency of the
MBR composition step itself. Multiple compatible registers are com-
posed to larger MBRs, allowing the use of incomplete MBRs.

The second case (Case B) is a clock net that has a similar fanout, consist-
ing of 2795 registers, but a larger portion are existing MBRs formed in
logic synthesis. This example highlights the power of MBR decomposi-
tion and optimization, combined with MBR re-composition, and sizing.

(a) (b)

Figure 58: The initial distribution of register sizes, and after each major step of the proposed
flow for the clock net of (a) Case A and (b) Case B.

The initial configuration of Case A is shown in the initial bar of Fig-
ure 5.8(a). The 3571 registers belong to several categories. The library
used supports 1, 2, 3, 4 and 8-bit registers. After decomposition the
register count increases to 3588 due to decomposition of the MBRs with
timing incompatible pins. The MBR composition flow greatly reduces
the total number of registers. The register count is reduced by 37% rel-
ative to the number of registers of the initial design. Single-bit registers
are reduced to almost a third of the initial ones, and the number of 4
and 8-bit registers is increased accordingly.

Incomplete MBRs are allowed during MBR composition, provided that
each incomplete MBR does not impose more than 5% area overhead rel-
ative to the area of the registers that it replaced. After MBR composition,
there are 13 incomplete MBRs, all 8-bit MBRs. Following unused pin re-
covery, the final number of incomplete registers reduces to 9, reducing
the total number of registers to 2229.

Note that the efficiency of the proposed MBR composition flow is actu-
ally higher if we take into account that 1192 of the initial 3571 registers

110

5.6. Experimental Results

(almost a third) were skipped during the composition flow. They either
do not match functionally to any MBR library cell, or there is no larger
MBR in the library with the same functionality. From the 3571 initial
registers, only 2159 of them were composable, which were reduced to
1037 registers (2229 final registers, minus the 1192 skipped ones), corre-
sponding to more than 50% register reduction.

Similar results are derived for Case B, as shown in Figure. 5.8(b). With
more MBRs initially, MBR decomposition touched more registers, and
the 2795 initial registers increased to 2814 after decomposition. Despite
this increase, MBR composition and unused pin recovery significantly
reduced the total number of registers. After the application of the flow,
the final number of registers is 1862 (with 21 incomplete MBRs), corre-
sponding to 33% register savings. Again in this case, not all registers
were composable. Case B included 962 non-composable registers. Sub-
tracting these from the register count, the number of registers saved by
the proposed method was 50%.

Table 51: The properties of two example clock nets of the initial design and their properties
after the application of the proposed MBR composition.

Properties
Case A Case B

Gnitial Proposed Initial Proposed

Max Leaf Levels 10 9 9 9
Rise/Fall

Avg. Latency (ps)
742 748 718 622

Rise/Fall Avg.

Clock Skew (ps)
106 103 100 102

Clock

Wirelength (mm)
32.0 31.1 34.2 31.5

Buffer Count 287 229 242 224
Total

Capacitance (pF)
8.9 7.8 9.1 8.1

The register reductions achieved directly translate to power, buffer, and
wire length savings in the clock tree network. Table 5.1 summarizes
the results achieved for Cases A and B after applying CTS on the initial
clock nets and on those restructured by the proposed MBR composition
flow.

Clock tree capacitance, wire length, and buffer count are all reduced in
both cases examined. In Case A, the savings are higher due to the larger

111

5. Multi-Bit Register Composition

number of single-bit registers that allowed the MBR composition to ex-
plore more efficient MBR allocation choices. For example, clock tree ca-
pacitance and buffer count were reduced by 12% and 20%, respectively.
In Case B, the composable MBRs were fewer and already had a larger
bit width, limiting the available improvements for the proposed method.
However, in addition to the 7% reduction in buffer count, measurable
savings are still observed in clock tree capacitance and wire length (11%
and 7.8%, respectively). The clock skew is also improved, by reducing
the number of levels in the clock tree from 10 to 9 in Case A, and by
reducing the clock wire length in both cases.

The clock leaf number and the clock pin capacitance reduction typically
translate to lower clock latency. However, there are cases where the
clock latency does not exhibit the expected reduction, due to the MBR
placement algorithm that minimizes the total, and not specifically the
clock tree wire length. As a result, MBRs might move away from their
clock driver. In the case where the clock leaf defining the clock latency
moves even further, a slight latency increase is observed. The same
applies to clock skew, which is typically reduced; there are cases where
slight increases can occur, due to the non CTS-friendly placement.

The MBR composition flow shown in Figure 5.2 achieves similar im-
provements when applied across all the clock nets of the industrial de-
signs. Also, we did not apply any additional useful skew offsets in our
flow for these results.

Table 5.2 summarizes the register counts of the initial and the MBR-
restructured designs. Even in designs with a large initial portion of
MBRs, many registers were replaced by larger MBRs. The average sav-
ings in the total number of registers achieved by the proposed method
is almost 30%. The largest savings are observed in design D2, which
had the largest initial number of single-bit registers, while the smallest
savings are observed in design D4, where the majority of the registers
were already large 8-bit MBRs. The D6 number of single-bit registers
actually increased, due to the initial MBR decomposition, but this per-
mits more register composition with compatible slacks, resulting in an
overall register count reduction of 20%.

The reported savings correspond to a significant improvement after tak-

112

5.6. Experimental Results

Table 52: The initial distribution of register sizes and after the proposed flow.

ing into account how constrained the application of MBR composition is
in real industrial designs that are rich in MBRs after logic synthesis. For
example, in all examined cases, the compatibility graphs were extremely
fragmented, due to the strict compatibility constraints. Each compatibil-
ity graph contained multiple independent subgraphs with sizes fewer
than 10 nodes (recall that a node can correspond to an already formed
MBFF during logic synthesis). These small subgraphs were more than
85% of the total subgraphs and covered around 60% of the total regis-
ter bits of the designs. MBR candidate enumeration and the ILP-based
MBR assignment combine to get the most out of these small subgraphs.
In larger graphs (less than 5% of the subgraphs consist of more than 30
nodes), the proposed approach achieves equally good results, but with
increased runtime.

Several other design characteristics of the initial and restructured de-
signs are shown in Table 5.3. By reducing the number of registers, MBR
composition also reduces the complexity of the clock tree. Clock tree

113

5. Multi-Bit Register Composition

Table 53: Industrial designs characteristics before (Init) and after the proposed MBR com-
position flow (New).

capacitance is reduced by 9.22% and buffer count is reduced by 11.45%,
resulting in a similar reduction in clock power.

Clock and total wire length of the design is also reduced, due both
to fewer registers and the wire-length-minimization-driven MBR place-
ment. Note that in designs rich in MBRs, the clock wire length is a
smaller percentage of the total wire length. The reduction of registers
also led to a 0.37% and 1.64% average reduction in the total area of the
designs and the total number of cells, respectively.

Although we perform significant circuit restructuring, on average we
dont increase the timing violations, as highlighted by the worst nega-
tive slack (WNS) and the total negative slack (TNS) of the presented
benchmarks. On average, we reduce both WNS and TNS by 6.64% and
16.17% respectively. The only large discrepancy appears in design D3,
where MBR composition leads to an increase in timing violations.

Design D3 includes several highly dense regions that also include timing-
critical (start) endpoints that span across many paths of the design.
When composing new MBRs in such dense regions, the rest of the cells
in the region are slightly moved, even if they dont participate in the

114

5.6. Experimental Results

newly-formed MBRs. How far the rest of the cells move from their orig-
inal positions depends on the internals of the detailed placement engine,
and how it prioritizes each cells type (sequential or combinational), its
area, or its timing criticality. In the case of D3, the slight displacement
of timing-critical cells that affect many timing endpoints (mostly single-
bit register cells that didnt participate in MBR composition) causes a
cumulative effect that increases the TNS of the design.

There is no timing degradation if we avoid MBR composition in re-
gions with excessive cell density. However, this approach leads to fewer
composed MBRs, and to more registers in total at the end. The re-
sults given in this thesis do not take such precautions, and every region
(independent of its utilization) participates in MBR composition. This
fully unconstrained approach decreases the total number of registers to
21722 (37% savings - initially there were 34519 registers) with a 50% TNS
overhead relative to the initial design. When we skip the registers that
belong to regions with more than 95% cell density, then the total num-
ber of registers becomes 22467 (34% savings relative to the initial design)
while setup timing (WNS and TNS) is not degraded. Further decreas-
ing the density cut-off threshold, as tested with additional experiments
for 90% and 85% densities, increases register count without a noticeable
difference in TNS.

A similar trend is observed regarding the final clock skew. The majority
of the simplified clock trees produced after MBR composition demon-
strate improved behavior with respect to clock skew, except in D1 and
D4, where clock skew is marginally worse, due to an unfavorable place-
ment of the MBR cells.

In this work, we do not aim at reducing the overall routing congestion
of the design. Rather, our goal is to not degrade the global routing con-
gestion profile of the initial design after applying MBR composition to
reduce the number of registers and simplify CTS. This goal is achieved,
as shown by the results reported in the last column of Table 5.3. The
difference in overflow edges [121], without and with our MBR com-
position methodology, is marginal due to the placement-aware weight
selection for candidate MBRs in the ILP formulation.

In addition to the reduction of the number of overflow routing edges, as

115

5. Multi-Bit Register Composition

depicted in the rightmost column of Table III, the restructuring of the de-
signs does not globally alter the routing congestion profile of their crit-
ical edges. The routing edges with high utilization (demand/capacity
ratio) receive less utilization after MBR composition and detailed place-
ment, while routing edges with low utilization are additionally loaded.

This behavior is highlighted in Figure 5.9(a) for all routing edges of D1.
Each bar of Fig 5.9(a) corresponds to the edges of the initial design that
exhibit similar utilization, i.e., all edges that exhibit up to 0.1 utilization
are covered in the leftmost bar of Figure 5.9(a). For each of the initial uti-
lization groups, Figure 5.9(a) records the average percentage of change
(positive or negative) to their utilization after MBR composition. Follow-
ing the presented data, it is evident that the routing edges that initially
exhibited low utilization have increased their utilization, and the ones
with high utilization are less stressed after MBR composition. The same
conclusion can be derived by the data presented in Figs 5.9(b) and 5.9(c)
for designs D2 and D3, respectively, while the rest of the designs exhibit
similar behavior.

To isolate the routing congestion near the regions that include a MBR,
we identified the routing edges that pass on top of or next to multi-bit
registers in both the initial designs and the designs derived after apply-
ing the proposed MBR composition flow. For each edge, we recorded
the routing utilization in the initial and final designs. The histogram of
utilization for those routing edges is depicted in Fig 5.10 for designs D1,
D2 and D3. In all cases, the number of routing edges that are close to
MBRs increases (due to the additional MBRs composed by the proposed
flow), but their utilization remains under control, following the same
trend depicted for all the routing edges of the design in Figure 5.9.

Finally, Figure 5.11 highlights the runtime of each part of the MBR com-
position flow shown in Figure 5.2. The flow was executed on an Intel
Haswell server operating at 2.7 GHz with 512 GB of RAM. In all cases,
MBR composition corresponds roughly to half of the runtime of clock
tree synthesis (CTS), with the most expensive parts being the mapping
of the selected MBRs and their legalization. The solution of the ILP,
although consuming a non-negligible part of the overall runtime, is not
the bottleneck for the application of the proposed MBR composition. On
the contrary, the proposed enumerative ILP- driven methodology appro-

116

5.6. Experimental Results

(a): D1

(b): D2

(c): D3

Figure 59: The average percentage of change in the utilization per edge for each group
of edges that initially exhibited similar utilization (globally). After MBR composition, initial
low-utilization edges receive more load, thus increasing on average their utilization, while
edges with high utilization on average receive less load.

priately handles both the many small compatibility subgraphs and the
small number of larger subgraphs, while significantly reducing the total
number of registers.

117

5. Multi-Bit Register Composition

(a): D1

(b): D2

(c): D3

Figure 510: The histogram of the utilization of all routing edges that are close to MBRs in
the initial designs and final designs after applying the proposed MBR composition flow.

5.7 Conclusions
Applying MBR composition on industrial benchmarks requires a bal-
anced restructuring approach. In addition to the reduction in the num-
ber of registers and clock tree capacitance, it should also keep the po-
tential degradation in slack, wire length, and routing congestion under

118

5.7. Conclusions

Figure 511: The runtime of all the intermediate steps involved in the proposed MBR
composition methodology including also the runtime of CTS.

control.

In this work, we present a complete MBR composition flow that ex-
plores almost every aspect involved in the use of MBRs during physical
design. MBR decomposition is introduced to partially alleviate the tim-
ing incompatibilities derived after the placement of the original netlist.
Registers are then merged to form larger MBRs employing an ILP-based
optimization that uses new and realistic rules that determine register
compatibility. The ILP has a weighted selection of the best MBR can-
didates to facilitate their legalization and reduce contention for local
routing resources. We permit incomplete MBRs to achieve additional
MBR composition, but ensure that this is not detrimental for area or
leakage.

The combined effect of these steps significantly reduces register count
and, together with the timing-driven sizing of the MBRs, effectively re-
duces clock pin capacitance. The benefits are shown across six indus-
trial benchmarks, demonstrating the effectiveness in producing a lighter
clock tree without degrading timing or increasing routing congestion.

119

Chapter 6

Peak-Power Traffic for
Networks-on-Chip

As technology scales, it enables digital system designs with billions of
transistors integrated on a single chip. Besides the abundance of re-
sources, which has been the driving force behind the multicore archetype,
power constraints can rule key (micro-)architectural decisions. Keep
in mind that excessive power dissipation increases packaging/cooling
costs, reduces battery life in mobile devices, and adversely affects hard-
ware reliability, primarily due to elevated temperatures [117]. The in-
creasingly stringent requirement to adhere to a given power budget has
rendered power consumption a first-class design constraint [9]. Hence,
it is imperative for system architects to understand and accurately quan-
tify their design’s power usage from the early stages of the design pro-
cess [70].

One particular salient attribute is of paramount importance: the peak
(i.e., worst-case) power consumption [61, 73]. Both the system’s maxi-
mum performance and implementation costs (power delivery, packag-
ing, and cooling) are directly impacted by this worst-case power con-
sumption. A pessimistic peak power estimate will unnecessarily curtail
performance, while an optimistic estimate could potentially lead to reli-
ability problems.

Designers should be able to identify accurately the worst-case power
consumption. With the increased size of chips, it is an extremely chal-

121

6. Peak-Power Traffic for Networks-on-Chip

lenging problem, as the worst-case power usage of a system is not sim-
ply the sum of the maximum power of each component, due to under-
utilization and contention for shared resources. Hence, the peak power
consumption must be estimated using a stimulus that is realistic and re-
sides within the functionally feasible workload space of the system un-
der evaluation. Typically, designers rely on hand-crafted, custom-made
so called power viruses (also referred to as “stressmarks,” or “power-
marks”) to estimate a system’s peak power consumption [35, 111, 36].
However, the task of manually constructing a program for a specific ar-
chitecture is very cumbersome and error-prone. Most importantly, the
generated virus is not guaranteed to yield the maximum possible power
usage. Thus, automatic approaches to the generation of effective power
viruses are highly desirable.

Power viruses have been explored within the realm of CPUs, main mem-
ory, and off-chip I/O. One notable absentee is the on-chip network; there
is currently no methodology to identify the peak power consumption in
the system’s Network-on-Chip (NoC) backbone. Given the NoC’s func-
tional and performance criticality, it is obvious that peak-power analysis
cannot ignore such an elemental actor.

Merely summing the maximum possible link power consumption and
the maximum possible router consumption would result in a fake worst-
case estimate that would be excessively pessimistic. Salient functional
characteristics of the NoC – such as the employed routing algorithm
and the network topology – prohibit the simultaneous full utilization of
every NoC component at the gate level.

The main goal of this work is to present a high-level systematic method-
ology to generate realistic traffic patterns that cause peak power con-
sumption within the NoC. High network utilization alone is not enough
to generate peak power, because, if the data payloads happen to be “fa-
vorable” (i.e., yielding low switching activity), the NoC power consump-
tion may be quite low. Moreover, high network utilization is often con-
fused with highly congested networks. Congestion may severely affect
certain NoC regions, but may leave other regions under-utilized. Hence,
formulating the generic problem of peak power consumption within the
NoC involves the intricate interaction of all aforementioned nuances,
which is one of the key contributions of this work.

122

6.1. Peak-power Traffic Characteristics and Problem Formulation

The proposed framework can generate a peak-power “traffic virus” for
any NoC configuration. State-of-the-art NoC architectures follow regu-
lar, or irregular, topologies with homogeneous, or heterogeneous, link
widths, while their constituent components (routers, links, and network
interfaces) may belong to arbitrary clock and voltage domains. Con-
sequently, the various components contribute differently to the overall
power consumption of the NoC. The proposed approach handles all the
constraints that arise from the heterogeneous nature of modern NoCs
and generates the peak-power traffic patterns using a novel formula-
tion based on Integer Linear Programming (ILP), which executes in a
reasonable time, even for very large networks.

Even if the proposed methodology constitutes a high-level approach,
and it does not formally guarantee peak power consumption at the gate
level, it still tackles efficiently the problem of verifying – at design time –
the NoC’s peak power consumption. Extensive and detailed experimen-
tal evaluations using various NoC configurations validate the effective-
ness of the proposed methodology. The automatically generated traffic
patterns are demonstrated to cause an average of 4× higher power con-
sumption than randomly selected traffic patterns, or patterns that result
in high saturation throughput. Conversely, the proposed methodology
reveals that the realistic peak power of the NoC is 3× lower than the
peak power reported by pessimistic scenarios that assume additional
switching activity outside the functional workload space of the NoC. In
this way, the true bounds of the NoC’s peak power consumption are
highlighted, thus preventing unnecessary over-design steps that tackle
un-realistic worst-case scenarios.

6.1 Peak-power Traffic Characteristics and Prob-
lem Formulation

Peak power consumption is achieved when the system is operating at
its maximum potential. Thus, the optimization goal when develop-
ing power viruses is to maximize system activity and increase dynamic
power consumption. The dynamic power consumption of a NoC jointly
depends on (1) the clock frequency and the supply voltage of its com-
ponents, (2) the network component utilization that governs also the

123

6. Peak-Power Traffic for Networks-on-Chip

activation of any clock-gating logic, and (3) the data switching activity
caused by the traffic flowing inside the NoC every cycle. A network
component that carries data – e.g., the links, the buffers, the crossbar,
etc. – is considered utilized, as long as it performs a useful operation
in each cycle, while the amount of power consumed is directly propor-
tional to the switching activity caused by the bits of the traversing flits.
On the contrary, the dynamic power of the control portion of the NoC
does not depend on the bit-level profile of the data, but only on the per-
cycle activity of the arbitration and flow control logic. In state-of-the-art
NoCs employing wide links (128 bits, or more), the dynamic power of
the control logic is minimal compared to the dynamic power of the dat-
apath components [2, 63]. Therefore, in this work, we aim to trigger
the maximum possible power consumption in the datapath components
of the NoC, which are responsible for the majority of the total power
consumption. This goal is achieved by maximizing both the datapath
components’ utilization, i.e, being active in every clock cycle, and the
experienced data switching activity.

6.1.1 The Interplay of Contention and Data Switching
Activity

The power consumption of every NoC component and, especially, the
datapath components – considering both utilization and data switching
activity – is directly related to the effect of contention and multiplexing.
Whenever at least two flows compete for the same resource, e.g., a NoC
link through a router’s output port, they will possibly gain access to
the shared resource in a time-multiplexed manner, depending on the
employed arbitration policy. In this case, there is no way to predict the
data switching profile seen at the output of the shared resource, since
the output data stream is the result of multiplexing-in-time of two (or
more) flows that are unrelated in terms of their data properties.

An example of the unpredictability of the output data stream is shown
in Fig. 6.1, assuming two 4-bit-wide data flows. Multiplexing the two
flows “corrupts” the cycle-by-cycle bit-level profile of the data trav-
eling through the multiplexer. Although the two incoming streams
exhibit considerable switching activity when viewed independently of

124

6.1. Peak-power Traffic Characteristics and Problem Formulation

Figure 61: The process of multiplexing different data flows “corrupts” the data switching
profile of each individual incoming data stream, and can possibly lead to very low dynamic
power consumption.

each other, the arbitrated traffic that passes to the output of the multi-
plexer exhibits very few bits switching in every clock cycle.

Our goal is to control the data switching activity triggered inside the
network through the data injected at the sources of the network, with-
out any other intervention to the NoC’s operation. To achieve this goal,
we need to remove the unpredictability caused by intermediate con-
tention/multiplexing points. This is enabled by injecting into the net-
work totally contention-free traffic patterns. A traffic pattern is totally
contention-free when the flows injected by the sources of the network
never contend for the same resource in any part of the NoC. In this
way, the data switching activity experienced by all the intermediate NoC
components on the path from source to destination would exactly match
the data switching activity of the injected traffic. This is facilitated by
the fact that the unpredictability caused by multiplexing of unrelated
data streams is completely avoided.

At first glance, it may seem contradictory that we employ contention-
free traffic patterns, since contention-free flows are not often observed in
real-world environments, and our goal from the outset was to generate
a realistic stimulus. However, what we mean by a “realistic stimulus” is
one that is functionally feasible (i.e., permitted to occur), not one that is
necessarily frequently encountered. In fact, the goal of any power virus
is to generate the worst possible load, not a typically encountered load.

It should be noted that, in the presence of traffic contention, the data
switching activity may still be (possibly) predicted, and controlled di-

125

6. Peak-Power Traffic for Networks-on-Chip

rectly from the sources of the NoC, but only if the details of the arbi-
tration policy and the flow control rules (including any virtual chan-
nel allocation policy and the operational details of possibly pipelined
routers) are considered. However, since we target a high-level approach
that is agnostic to the NoC’s micro-architectural details – in order to be
easily applicable to any NoC configuration – we rely on conflict-free op-
eration that allows us to fully control the data switching activity and,
thus, maximize the observed power consumption.

6.1.2 Permutation Traffic and Network Utilization
To identify contention-free traffic patterns, we start by removing con-
tention at the endpoints of the network, i.e., the traffic injected by each
source is directed to a different destination. Therefore, out of all possible
traffic patterns, we need to identify those permutation traffic patterns
where (a) traffic is exchanged between unique source-destination pairs,
(b) no flow contention is caused inside the network, and (c) network
utilization is maximized.

An example of such a permutation traffic pattern is shown in Fig. 6.2(a)
for a 3×3 2D homogeneous mesh NoC, where all links have the same
width and operate under the same clock frequency, while the paths of
the injected flows are determined by the XY routing algorithm. The ter-
minal nodes are depicted as circles in the figure. The numbers beneath
each terminal node indicate the source/destination pair of the flow orig-
inating from that terminal node, e.g., the “1 → 8” designation below
node 1 indicates that the traffic generated at this node goes to node 8.
Each source/destination pair is unique as needed by permutation traf-
fic and contention is avoided completely thus allowing (a) for full NoC
component utilization (injection and ejection throughput can be 100%),
while, (b) at the same time, the sources can control, from outside the
network, the data switching activity inside the NoC.

Not all permutation traffic patterns are appropriate for avoiding con-
tention inside the network while still triggering the maximum network
utilization. For example, the permutation traffic shown in Fig. 6.2(b)
leaves 4 links idle (links 6 → 3, 3 → 6, 5 → 8, and 8 → 5), even if
it completely avoids contention in the network and enables full injec-

126

6.1. Peak-power Traffic Characteristics and Problem Formulation

6 8

4

0 2

5

7

1

3

0 4 1 5 2 3

3 7 4 2 5 0

6 1 7 6 8 6

(b)

6 8

4

0 2

5

7

1

3

0 8 1 5 2 1

3 7 4 6 5 0

6 2 7 4 8 3

(c)(a)

6 8

4

0 2

5

7

1

3

0 4 1 8 2 6

3 7 4 2 5 0

6 1 7 5 8 3

Figure 62: Three different permutation traffic patterns in a 3× 3 2D mesh: (a) A pattern
that causes maximum NoC component utilization, which yields peak power consumption (i.e.,
the desired pattern); (b) A pattern that leaves certain links idle, even though it achieves full
injection/ejection throughput and avoids contention; (c) A pattern that merely congests
certain network channels, while leaving parts of the NoC unutilized.

tion/ejection throughput transmissions.

Even worse, the permutation traffic shown in Fig. 6.2(c) not only leaves
some links idle, e.g., 1→ 0 and 4→ 5, it also preserves in-network con-
tention. Besides causing unpredictability in the data switching activity,
in-network contention also limits the utilization of certain links, i.e., they
do not receive a flit every cycle. For instance, the 0→ 1 link is only used
with 50% throughput, because the red flow going from node 0 to node 8
encounters contention in the downstream node 1, and is forced to share
the 1 → 2 link with the dark green flow going from node 1 to node 5.
Since the red flow only uses 50% of the bandwidth of the 1→ 2 link, the
throughput of the 0 → 1 link also falls to 50%, i.e., it remains idle for
50% of the time. Once a link is un(under)-utilized, the router compo-
nents connected to the link’s endpoints (multiplexers, pipeline registers,
flow control logic, and input buffers) also remain idle, or under-utilized.

The permutation traffic shown in Fig. 6.2(c) is also a very good example
of why peak-power traffic selection should not be confused with traffic
patterns that cause network congestion and worst-case throughput. This
permutation traffic is produced using the method in [137] with the goal
being to maximize the load on certain channels, in order to stress the
network and highlight its worst-case throughput. However, even though
the NoC is congested, many portions of it remain under-/un-utilized,
and exhibit lower power consumption.

In regular and homogeneous NoC topologies, peak power is triggered

127

6. Peak-Power Traffic for Networks-on-Chip

(a) (b)
4

3

1
5

6

7

4

3

1
5

6

7

A

B

C

A

B

C

2 2

Figure 63: An example of a heterogeneous NoC with an irregular topology and one asym-
metric router. Two traffic patterns are shown: (a) A contention-free traffic pattern that
achieves the maximum possible utilization; (b) The traffic pattern that actually achieves
peak power consumption, despite leaving two short links idle.

.

by appropriately-selected permutation traffic patterns, similar to the one
shown in Fig. 6.2(a), which yield full utilization of all network links at
the maximum throughput. Their contention-free operation allows the
switching activity of each path to be controlled directly from the sources
of the network in an end-to-end manner. Even if some NoC components
are not identical – in terms of their micro-architecture – they are still
fully utilized, irrespective of their differentiated design parameters. For
example, all links receive full (100%) utilization, irrespective of their
length. Both short and long wires are equally utilized; this attribute
translates into longer wires consuming more power than shorter wires.
However, identifying the appropriate permutation traffic by selecting
randomly one from the set of all possible permutation traffic patters in
not feasible. As shown in [124], only a few patterns (0.5% for a 3× 3
mesh) fulfill the peak-power traffic requirements of allowing contention
free operation and utilize all the links of the NoC. In larger networks the
percentage of the favourable traffic patterns drops drastically, as well as
the opportunity to find one randomly,e.g., on a 8× 8 mesh 1.98 · 1087

different permutation traffic patterns can occur.

6.1.3 The Case of Heterogeneous NoCs
In heterogeneous NoCs, many architectural and physical parameters can
vary depending on the application scenario. For instance, the NoC may

128

6.1. Peak-power Traffic Characteristics and Problem Formulation

consist of links with different bandwidths (i.e., the combined effect of
link width and clock frequency), or parts of the NoC may belong to
different voltage and frequency domains. In such cases, uniform full
utilization of all NoC components may either be infeasible, or it may
even lead to lower peak-power consumption. In such cases, leaving
some links idle may increase the peak power consumption observed, by
increasing the utilization of the parts of the NoC with the maximum
contribution to the overall power consumption.

In the example shown in Fig. 6.3, the NoC has an irregular topology that
employs uniform link widths, clock frequency, and voltage, but exhibits
several other asymmetries in both the routers and the lengths of the
links. The depicted contention-free traffic pattern in Fig. 6.3(a) achieves
the maximum utilization and, inevitably, leaves one link idle (i.e., the
one that connects source 4 with router C). Note that it is impossible to
concurrently utilize all input links of router C, since the number of out-
put ports (one) is smaller than the number of input ports (two), which
means that the router’s single output port cannot serve both of its in-
puts in the same cycle. However, in terms of peak power consumption,
the most favorable traffic pattern for this topology is the one used in
Fig. 6.3(b). In this case, the links are prioritized according to their power
contribution; the ones with the larger power dissipation (i.e., the longer
ones) are utilized, while other links with smaller power dissipation are
left idle.

Leaving some links idle may also be required when trying to increase the
power consumption of NoCs that are split across different voltage/fre-
quency domains, as the one shown in Fig. 6.41. In Fig. 6.4(a), the NoC is
flooded by a contention-free permutation traffic pattern that utilizes all
the NoC links. If the NoC operated under a single voltage/frequency
domain, this traffic pattern would have been the most appropriate for
triggering the peak power consumption. However, in this case, there
are paths, such as 0 → 5, which involve links of different bandwidths
(the links have the same bit-width, but they operate at different clock
frequencies). This bandwidth asymmetry throttles the fast links (oper-

1In this example, we assume that voltage and clock-domain interfacing occur on
the receiver side of each link. Thus, each link belongs to the voltage/frequency domain
of its driver.

129

6. Peak-Power Traffic for Networks-on-Chip

6 8

4

0 2

5

7

1

3

0 5 1 4 2 3

3 7 4 8 5 6

6 2 7 0 8 1

1.5GHz, 1V

0.8GHz, 0.8V

0.5GHz, 0.7V

6 8

4

0 2

7

1

3

0 4 1 3 2 8

3 1 4 0 5 7

6 2 8 6

1.5GHz, 1V

0.8GHz, 0.8V

0.5GHz, 0.7V

5

(b)(a)

Figure 64: An example of a NoC that is split across different voltage/frequency domains.
Two traffic patterns are shown: (a) A contention-free permutation traffic pattern that utilizes
all the NoC links; (b) A traffic pattern that achieves higher peak power consumption by
allowing the high-frequency links to operate at their maximum throughput (even if some
other links remain idle).

ating at 1.5 GHz), and their effective throughput is determined by the
slowest link of the path (i.e., the ones that belong to the 500 MHz do-
main). The injection throughput of source 0 that is clocked at 1.5GHz
drops inevitably to 1/3 flits/cycle at 1.5 GHz, due to the backpressure
generated by the links that operate at 500 MHz. Therefore, the links of
the path 0 → 5 that belong to the fast clock domain are under-utilized
and experience only one third of their peak power.

On the contrary, if the same NoC is driven by the permutation traffic
shown in Fig. 6.4(b), the peak power observed would be 1.3× higher
than the peak power triggered by the pattern shown in Fig. 6.4(a). In
this case, even if some links remain idle, the overall power consumption
increases, since the most power-hungry links (the ones operating at 1.5
GHz) are allowed to operate at their maximum throughput of 1 flit/cy-
cle at 1.5 GHz, by avoiding mixing links with different bandwidths on
the same path.

Overall, triggering the peak power consumption of a homogeneous, or
a heterogeneous, NoC with a parameterized configuration by only in-
jecting traffic from the sources of the network is a multi-parameter problem

130

6.2. Generation of Peak-Power Traffic

with a huge design space.The approach presented in the next section can
identify legal – with respect to the routing algorithm – and contention-
free permutation traffic that tries to maximize – as much as possible
– the power consumption of the NoC, by increasing the NoC com-
ponents’ utilization and their data switching activity in a controllable
manner, after taking into account the NoC’s structural and physical-
implementation properties. By eliminating contention, the employed
high-level approach allows us to control the utilization and the data
switching activity experienced by the datapath components of the NoC.
In this way, even though we cannot formally guarantee the generation of
the maximum possible power consumption within the NoC at the gate
level, we are able to significantly increase the peak power consumption
of the NoC, as will be shown in the experimental results.

Other, non-permutation traffic patterns, whereby each source can send
traffic to multiple destinations can be alternatively used for triggering
high power consumption within the NoC. However, such patterns ei-
ther lead to contention-free traffic that under-utilizes some links of the
network (e.g., nearest-neighbor traffic in a 2D mesh, where each node
sends all of its traffic to its immediate neighbors), or they achieve full
utilization of all the NoC components while allowing contention dur-
ing network traversal. As previously mentioned, contention makes the
triggered data switching activity unpredictable.

6.2 Generation of Peak-Power Traffic
Deriving contention-free traffic patterns that maximize the NoC’s power
consumption is performed via a novel ILP-based formulation. The goal
of the power maximization problem is to find a permutation traffic pat-
tern – i.e., each source node sends all of its traffic to a unique desti-
nation different from the other sources – that does not cause any con-
tention inside the network, and prioritizes the usage of the most power-
consuming paths.

In its most generic form, the network connects N source nodes and M
sink nodes. In reality, the number of source and sink nodes is equal,
N = M, since each network terminal can both inject and receive data
to/from the network.

131

6. Peak-Power Traffic for Networks-on-Chip

The source and sink nodes that are allowed to communicate are declared
via binary variables cij ∈ {0, 1}. If cij = 1, then source i is eligible to
send data to sink j.

The communication between a pair of source and sink nodes is per-
formed using the links and the routers of the network. The path (i.e.,
the set of links and router input-output connections) that will be used
for the pair’s communication is solely determined by the routing algo-
rithm. In this work, we target only deterministic routing algorithms, as
employed in the majority of industrial NoC implementations [10, 110].
With deterministic routing, each source i can communicate with each
sink node j via a single path, declared as Pij. Therefore, for each one
of the N sources, there are M candidate paths to be selected. For each
path Pij, we define a binary variable xij ∈ {0, 1} that declares if the path
will be selected in the final permutation traffic pattern, or not. If xij = 1,
then source i sends all of its traffic to sink j.

Permutation traffic imposes that each source i can send its traffic to
at most one sink j, and each sink j can accept traffic from at most
one source i. To satisfy these constraints, we need ∑N

i cijxij = 1 and
∑M

j cijxij = 1, where cij declares if endpoints i and j are allowed to com-
municate. As shown in Section 6.1, in order to maximize the power
consumption of the NoC, it may be advantageous (in some cases) if the
permutation traffic is not complete, i.e., some sources do not send any
traffic, or some sinks do not receive any traffic. Therefore, to allow for
this behavior, the constraints should be relaxed as follows: ∑N

i cijxij ≤ 1
and ∑M

j cijxij ≤ 1.

The selected permutation traffic should not cause any contention inside
the network. This is guaranteed, if each link in the network is utilized
for servicing the traffic of only one path Pij. If more than one paths
are serviced by the same link, it means that at least two sources send
traffic through the same link, thus possibly causing contention and re-
moving the required predictability of the data switching activity (see
Section 6.1). If contention is avoided, then the switching activity of all
the links and all the router input/output ports along a path Pij can be
directly controlled by the data injected from source i.

For each link k, we enumerate the set of paths that use the correspond-

132

6.2. Generation of Peak-Power Traffic

0 3 41 2 5

3 possible flows

0 5, 1 4, 2 3

A B C D E F

Figure 65: Choosing traffic-flow paths within the NoC. Link C → D may be used by 3
different flows, but, eventually, only one should be assigned to use it, or none of them (i.e.,
it may remain idle).

ing link, following the rules of the selected routing algorithm. In the
example shown in Fig. 6.5, the link that connects routers C and D is
used in the set of paths {P05, P14, P23}. This link should be assigned to
only one of the three paths that can possibly use it, or to none of them.
This constraint is satisfied when x05 + x14 + x23 ≤ 1. A link is allowed to
stay idle, if this gives more freedom to the overall power maximization
problem. Transforming this inequality to an equality would constrain
the ILP to use every link for serving some communication path, which
is only desirable in the case of fully homogeneous NoC designs. The re-
lationship between the links of the network and the paths that can use
them is summarized in a 3D binary matrix with elements tijk ∈ {0, 1}.
Element tijk = 1 when link k is used by path Pij. This assignment holds
for both the in-network links and the incoming/outgoing links that con-
nect the source and sink terminals to the routers of the network.

The ILP used for identifying the appropriate traffic pattern that maxi-
mizes the power consumption of the NoC is formulated as follows:

maximize
N

∑
i=1

M

∑
j=1

wijcijxij

subject to ∀ link k:
N

∑
i=1

M

∑
j=1

tijkcijxij ≤ 1

xij ∈ {0, 1}, i = 1, . . . , N j = 1, . . . , M

For the solution of the ILP, i.e., the identification of the optimal values

133

6. Peak-Power Traffic for Networks-on-Chip

of xij, the binary variables cij, tijk are constants declaring whether source
i can send traffic to sink j, and whether link k is used by path Pij, respec-
tively. The power cost of selecting the path Pij is equal to wij.

For fully homogeneous NoCs, as the ones shown in Fig. 6.2, which merely
need a permutation traffic pattern that is conflict-free and utilizes all the
links of the NoC, we just need to set wij = cij = 1. The variables tijk
are not simplified, and are set according to the properties of the routing
algorithm.

In heterogeneous networks, the power cost wij of each path Pij is affected
by several parameters, since the routers and the links along the path
between source i and sink j may belong to different voltage domains,
may operate at different clock frequencies, and may have different bit-
widths.

The approach in [124] identified the traffic pattern that utilized all the
links of the NoC by finding a Hamiltonian path on the enhanced channel
dependency graph. Although this approach is effective in homogeneous
NoCs, it cannot be applied to heterogeneous topologies, since full link
utilization may either be infeasible, or it may even lead to lower peak-
power consumption. On the contrary, the ILP-based optimization covers
both cases effectively.

6.2.1 The Power Cost of Each Path
The dynamic power consumption of a path Pij is the sum of the dynamic
power experienced in each segment of the path, which includes moving
flits from the input buffer of one router to the input buffer of the next
router. This data movement across each path segment consumes power
inside the router, on the link that connects the two neighboring routers,
and within the input buffer of the next (downstream) router.

Router traversal accounts for the power consumed for a buffer read and
for traversing the crossbar, while also including the power expended in
the control logic (input-request generation logic, arbitration, and flow
control logic). The actual power cost can vary significantly based on the
router’s configuration, i.e., the number of input/output ports, the flit
width, the number of Virtual Channels (VC), the buffer depth of each
VC, and the number of pipeline stages.

134

6.2. Generation of Peak-Power Traffic

In every configuration, the power spent inside the router is heavily data-
dependent. Even if a new flit is sent in every clock cycle, if these flits
happen to have almost the same bit-level profile, the actual power con-
sumption remains very low, due to minimal switching activity. Similarly,
the dynamic power of the link depends on the data switching activity of
the transferred bits.

In either case, we cannot have a clear estimate of the power cost of each
path segment, unless we have determined the data switching activity
seen by the corresponding NoC components. The data switching ac-
tivity is determined by two factors. The first one is the throughput of
data transfers λij, i.e., how often a new data word (flit) enters and leaves
path Pij of the NoC, and the second one is the bit-level profile of each
transmitted word. Once both factors are known, the assumed power
cost would be accurate enough, since it would reflect both the power of
the exact NoC configuration (link widths, number of VCs, etc.), and the
power consumed due to the selected data profile.

In general, the power cost wij of each path Pij is equal to

wij = λij ×
#segments

∑
s

Power of segment(s).

The calculation of the effective injection throughput for each path λij is
described in Section 6.2.2. The methodology of generating the bit-level
data patterns that guarantee high switching activity (and are used for
the determination of the Power of segment) is presented in Section 6.2.3.

6.2.2 Effective Throughput of Each Path
Even if the paths derived from the ILP will be conflict-free, we may not
be able to inject new flits at the maximum throughput of 1 flit/cycle
in certain paths. This phenomenon appears only in heterogeneous NoCs
that consist of paths with links of different bandwidth. In homogeneous
NoCs, full-throughput data transfers on all links is always achieved.

In the example shown in Fig. 6.6, all the links operate at the same clock
frequency (1 GHz), but one link is narrower. Thus, all links can transfer
64-bit flits, except one link that can transfer 32-bit flits. In this case, the
narrow link will throttle the flow of data due to (de)serialization under

135

6. Peak-Power Traffic for Networks-on-Chip

0 2
64 64 32 64

f=1GHz

clock

A B C

Figure 66: In this example, all links operate at the same clock frequency (1 GHz), but one
link is half as wide as the other links (32 vs. 64 bits). Consequently, the narrow link will
throttle the flow of data due to serialization, thereby limiting the maximum utilization and
switching activity observed on the wide links.

the same clock frequency. The effective throughput seen at the injection
source, which consists of wide links, would be half of the maximum
possible. Hence, the effective switching activity experienced on the wide
links would be half of the maximum that could be experienced if all the
links of the 0→ 2 path had equal bandwidth.

If we denote the bandwidth of each link k as BWk = fk ×Wk, where
fk is the clock frequency of the driver of the link and Wk is the link’s
bit-width, the effective injection throughput of a path Pij that consists of
multiple links in series (separated by routers) is equal to

λij =
min BWk

BWi
, ∀ link k ∈ Pij.

6.2.3 Maximizing The Data Switching Activity
The final step for the determination of the power cost wij of each path
Pij is to estimate the power that is dissipated in each router and link of
the NoC (i.e., Power of segment). To do so, we rely on real NoC imple-
mentations using state-of-the-art EDA tools driven by data patterns that
maximize switching activity.

Identifying accurately the appropriate (worst-case) data patterns can be
done only using specific gate-level techniques [146, 99]. However, such
techniques can be applied only in certain sub-modules of the NoC and
cannot be extended to the network-path level. Therefore, to tackle the

136

6.2. Generation of Peak-Power Traffic

problem of identifying the worst-case data patterns, we need to con-
sider only the microarchitecture-level aspects of the NoC and focus on
the microarchitectural features that are found in the majority of NoC
designs.

For the links, a repetitive data pattern that switches between 0101 . . . 01→
1010 . . . 10 is enough to trigger worst-case power consumption. Each bit
experiences a change in every cycle, either 0 → 1 or 1 → 0, which
switches the corresponding capacitance of the wire to ground. Further,
this data pattern ensures that neighboring wires always switch in the
opposite direction, thereby causing the worst-case power consumption,
due to the link’s coupling capacitance [143].

However, for the VC buffers and the internal logic of the router, we can-
not be sure of the exact switching activity caused by this 2-data vector
pattern. Assume, for example, the case of VC buffers that are built using
register-based (i.e., flip-flop-based) FIFO queues, or using SRAM blocks.
In either case, power is consumed every time a new flit is written to, or
read from, the VC buffers. On each write, a new flit is written to only
one VC. Inside the queue of each VC, the flit is written into the register
that corresponds to the address pointed to by the tail pointer of the en-
abled VC queue. Therefore, on each write, only the bits of one register
can change value. The rest are not enabled, or remain clock-gated, as
normally done in industrial NoC implementations. Therefore, to maxi-
mize power, we need to guarantee that (a) the new value written to the
register is different from the one already stored, and (b) the two values
(the old and the new one) differ by as many bits as possible. This can
only occur if we know beforehand the specific slot of the VC queue into
which the incoming flit will be stored.

When a repetitive data pattern of D words (flits) is placed – one word
after the other – in a buffer with B slots, then we can guarantee that
any incoming word will be written (stored) into a register that already
stores a different value, as long as the greatest common divisor of D
and B is equal to one. When B is odd, the 2-vector data pattern that
also maximizes the power on the links is the proper choice. When B is
even, we can select a repetitive data pattern of B + 1 words. The B + 1
words can safely include B/2 repetitions of the 2-vector data pattern
0101 . . . 01 → 1010 . . . 10 → 0101 . . . 01 → 1010 . . . 10, plus an all-zero

137

6. Peak-Power Traffic for Networks-on-Chip

vector. Depending on the NoC configuration, the repetitive set of data
patterns can also extend across different packets, as long as the flits of
the packets flow consecutively in the NoC.

In terms of power, the traffic injected can stay within the same VC from
source to destination, as long as one flit is written and read per cycle,
and the data values written and read have the maximum bit-wise dif-
ference. Distributing traffic across VCs for each non-conflicting flow
produced by the proposed method is possible, but it needlessly com-
plicates the derivation of the appropriate data switching patterns that
cause the maximum switching activity, without any true impact on the
triggered power consumption.

Even though the non-conflicting nature of the traffic patterns can max-
imize the switching activity in the datapath of the NoC (links, buffers,
crossbar), the arbitration part is kept operating on the same requests and
grants in each cycle. This causes minimum switching activity in this por-
tion of the NoC. However, this is not a problem in modern NoCs with
wide datapaths of 64 bits or more, since the power of the arbitration
logic is low relative to the datapath portion [63]. This argument is also
verified by the experimental results in Section 6.3, when using random
traffic. The latter maximizes the switching activity in the arbitration
modules, due to the random nature of the input requests. Even when
compared with this traffic scenario, the proposed technique achieves
significantly higher power consumption by only appropriately targeting
the switching activity in the part of the NoC that carries data.

6.2.4 Overall Flow and Examples
The steps involved in the application of the proposed methodology is
summarized in the flow depicted in Fig. 6.7. Driven by (a) the NoC
topology that describes the NoC’s structure, the voltage/frequency do-
mains, and the link widths, (b) the routing algorithm, and (c) the set
of nodes that are allowed to communicate, we form the network paths
across all pairs of source and sink nodes, and then calculate the power
cost of each path. For the calculation of the power cost of each path, we
use the power pre-computed for each NoC component. Once the weight
for every pair of communicating nodes is known, the ILP is formulated

138

6.2. Generation of Peak-Power Traffic

Figure 67: The overall flow of the proposed methodology, which can be used to derive
peak-power traffic patterns.

and solved using the Gurobi solver [56]. The derived traffic patterns and
the proposed data patterns then drive timing-accurate gate-level logic
simulations to provide the actual switching activity that is subsequently
used to calculate the power consumption of the NoC.

Fig. 6.8(a) depicts the ILP-derived non-conflicting permutation traffic
that causes 100% link utilization in an asymmetric 2D mesh network
(the asymmetry is the result of a faulty router which is decommissioned
and not shown in the figure). In this case, the turning restrictions of
the routing algorithm [114] (depicted as small arrows at certain turn-
points within the network) guarantee connectivity and deadlock free-
dom. Equivalently, the peak power traffic for a tree that applies the
up/down routing algorithm is highlighted in Fig. 6.8(b).

Fig. 6.9 illustrates a peak-power traffic scenario for a hierarchical ring.
Ring and tori topologies employ VCs to ensure freedom from possible
routing deadlocks. To model the specific use of VCs for deadlock-free

139

6. Peak-Power Traffic for Networks-on-Chip

A B C D

E F

G

Figure 68: The peak-power traffic patterns generated by the proposed methodology for (a)
an irregular network, such as an asymmetric 2D mesh, and for (b) a tree topology.

Figure 69: Peak-power traffic patterns derived by the proposed methodology for a hierar-
chical ring, which employs virtual channels for deadlock freedom.

routing, we include each link multiple times in the ILP; as many times
as the number of supported VCs per network link. Eventually, after the
solution of the ILP, only one VC will be used per physical channel of the
network to carry the generated peak-power traffic. The derived traffic
flows are allowed to change VC in-flight, as long as this is dictated by the
routing algorithm; in any other case, each traffic flow remains within the
same VC. In this way, the ILP exercises all possible turns at the VC level,
but, ultimately, it selects only one VC-to-VC connection. The proposed
optimization does not impose any specific rule for acquiring a VC, other
than the rules imposed by the routing algorithm.

The proposed methodology can also be applied – without any changes –

140

6.2. Generation of Peak-Power Traffic

0 3 1 10 2 5 3 0

4 7

5 2

11 8

9 6 8 11 7 8 6 9

10 1

0 1

10

11

3

4

5

2

89 7 6

Figure 610: Peak-power traffic patterns derived by the proposed methodology for a ring
that employs concentration, whereby two terminal nodes are connected per router.

to the case of NoC topologies that employ concentration, i.e., where mul-
tiple terminal nodes are connected per router. An example peak-power
traffic scenario derived by the proposed approach on a concentrated ring
is shown in Fig. 6.10. Depending on the NoC configuration, the derived
peak-power traffic patterns may involve both local and global traffic.
Local traffic involves the exchange of traffic across terminal nodes con-
nected to the same router, while global traffic involves traffic exchanged
across terminal nodes that belong to different routers. Both traffic cases
enable the maximization of the power consumption across the NoC’s
datapath, since they utilize – as much as possible – both the routers’
internal datapath and the NoC links.

6.2.5 The Complexity of The ILP
The complexity of the ILP is determined by the number of variables xij,
i.e., N ×M, and the number of constraints, which is equal to the num-
ber of links in the NoC. For practical NoC cases of up to 1024 nodes, the
ILP can easily be solved within a reasonable execution time. The peak-
power traffic identification problem, including both path enumeration
and weight calculation, as well as the solution of the ILP (assuming that
the power of routers and links is computed beforehand), can complete
its execution in just a few minutes for well-known NoC topologies of
hundreds of nodes. The run-times required to derive peak-power permu-
tation traffic patterns for various topologies and various network sizes

141

6. Peak-Power Traffic for Networks-on-Chip

are shown in Table 6.1. The run-times correspond to an implementation
that runs on a Linux computer with a 2.3 GHz Intel Core i7-4712HQ
Processor and 16 GB of RAM.

Table 61: Run-times of the proposed technique: Time needed to derive peak-power permu-
tation traffic patterns.

#Nodes Ring
Hierarchical

Ring
2D Mesh 3D mesh 2D Torus

Hetero

2D Mesh

16 0m 1s 0m 9s 0m 2s 0m 1s 0m 1s 0m 4s

64 0m 5s 0m 6s 0m 4s 0m 3s 0m 2s 0m 8s

256 0m 17s 0m 12s 0m 11s 0m 10s 0m 8s 0m 21s

1024 10m 32s 8m 27s 21m 06s 21m 31s 21m 47s 24m 43s

The investigated topologies correspond to well-known homogeneous
networks and a heterogeneous 2D mesh that is split into 3 voltage/fre-
quency domains, similar to Fig. 6.4(a). The size of each domain grows
proportionally to the overall network size. From the runtimes reported
in Table 6.1, deriving the peak-power traffic patterns for the heteroge-
neous 2D mesh (right-most column) requires more time than the ho-
mogeneous cases. The extra time is spent for weight calculations and
for solving the ILP. Nevertheless, the reported runtimes are manageable
even for very large NoCs.

6.3 Experimental Evaluation
The goal of the proposed method is to trigger the peak-power consump-
tion of a NoC by injecting appropriately selected traffic patterns that
maximize network component utilization and data switching activity.
The proposed traffic patterns do not formally guarantee the maximiza-
tion of the power consumption of the NoC at the gate level. However,
they cause significantly higher peak power than random traffic, and,
since they do not rely on the gate-level details of the NoC components,
they can be successfully applied to multiple NoC configurations. In any
case, it should be stressed that the proposed traffic patterns aim at the
on-purpose maximization of the power consumption. Therefore, they
represent – by construction – a corner case of the NoC’s operation, which
is expected to occur rarely under normal system operation.

The experiments evaluate 64-node NoCs following 2D mesh and hier-

142

6.3. Experimental Evaluation

archical ring topologies. Other tested topologies show similar trends.
Both homogeneous and heterogeneous variants of the aforementioned
topologies are evaluated. In order to contain the number of possible con-
figurations, we assume a tile-based chip floor-plan similar to the Scorpio
chip [29]. Scorpio was built at 45 nm technology (which matches the
technology library we used in our implementations), using a tile size of
approximately 2×2 mm. Based on the chosen NoC topology, the NoC
routers can have a variable number of input and output ports. For ev-
ery configuration, we assume that the NoC supports 4 VCs per input
port, with 5 buffer-slots/VC, and the NoC routers employ the 3-stage
pipelined organization of Scorpio routers [29].

All NoC components used in the evaluation were implemented in Sys-
temVerilog, mapped to a commercial low-power 45 nm 0.8 V standard-
cell library, and placed-and-routed using the Cadence digital implemen-
tation flow. Depending on the NoC topology, a different placement-and-
routing round was conducted.

Power was measured after performing timing-accurate simulations, us-
ing the proposed data patterns and including all back-annotated layout
parasitics. Power measurements were performed twice: once for char-
acterizing the power cost of each NoC component, as needed for the
computation of the weights of the ILP, and, secondly, for deriving the
final power of the NoC when it operates on the selected traffic pattern
produced by the ILP.

6.3.1 Homogeneous NoCs
In the first set of experiments we evaluated the proposed methodology
on homogeneous NoCs operating at 1GHz. In this case, the inter-router
NoC links carry 64 bits of data, plus some extra flow control informa-
tion. The header flit, which also includes network-addressing informa-
tion, carries fewer actual data bits.

In the first set of experiments, we compare the proposed method against
random synthetic traffic patterns, under various data switching and
network-injection scenarios. The instantaneous power consumed by a
NoC when the incoming traffic causes contention across flows with un-
related data (this occurs in almost all cases under normal operation) can

143

6. Peak-Power Traffic for Networks-on-Chip

Hierarchical Ring

Figure 611: A 10K-cycle snapshot of the instantaneous power consumption of a homoge-
neous 64-node 2D mesh (top) and a hierarchical ring (bottom), after the network reaches
steady-state operation, using uniform-random traffic and data.

vary significantly over time, depending on the switching activity in var-
ious parts of the network in each cycle. This behaviour is highlighted in
Fig. 6.11, for an 8×8 2D mesh and a 64-node two-level hierarchical ring
that consists of 8-node local rings connected via an 8-node global ring.

Both networks receive uniform-random traffic at a different rate (close
to their saturation throughput), as reported in Fig. 6.11. The two NoCs
have equal link width, i.e., 64 bits plus flow-control bits, and both op-
erate at 1 GHz. Therefore, the bisection bandwidth of the 2D mesh is
larger than the bisection bandwidth of the hierarchical ring. The injected
packets are 5-flit long and carry random data in their payload portion.
In this experiment, the bit of each flit when entering the network has
equal probability of being 0 or 1, independent of the rest of the bits of
the same flit, or the previous flits.

The peak power consumption achieved by random traffic is merely the
peak instantaneous power observed during the simulation’s time frame.
There is no guarantee that a large power value can be triggered dur-
ing simulation, due to the unpredictability in switching activity, and
the lower NoC utilization caused by contention among different flows.
Additionally, the observed peak power consumption simply represents
an instantaneous peak. This cannot be sustained over a longer period

144

6.3. Experimental Evaluation

Hierarchical Ring

Figure 612: A 10K-cycle snapshot of the instantaneous power consumption of a 64-node
2D mesh and a hierarchical ring (under steady-state network operation), using traffic/data
derived by the proposed methodology, with full injection throughput.

of time, which would be required to observe possible temperature in-
creases and identify thermal hot-spots in the system.

On the contrary, the proposed method does not have such limitations.
In Fig. 6.12, we report the instantaneous power consumed by the pro-
posed approach under 100% injection load for each case (2D mesh and
hierarchical ring). The results are measured by injecting 5-flit packets
in the NoC, following the ILP-derived permutation traffic pattern, and
carrying data payloads with the 2-vector data patterns described in Sec-
tion 6.2.3. Evidently, the proposed methodology keeps power consump-
tion constantly and consistently very high. The minimal variance in the
power consumption is due to the switching profile of the header and
flow-control bits, which are not controlled by our ILP-based approach.

Next, we compare the peak power consumption of the proposed method
and random traffic scenarios (uniform-random and bit-complement traffic),
under the same injection load. For each injection load, the maximum
instantaneous power consumption value observed (over 500,000 cycles
of simulation) was recorded. The results are depicted in Fig. 6.13, for
the same 2D mesh and hierarchical ring topologies. The peak power
consumption of random traffic (blue curves) follows the throughput be-
havior of the network itself, and, after saturation (when the utilization
of NoC components reaches its limit), the peak power consumption ob-
served is rather constant. On the contrary, the proposed approach can
increase the power consumption to its true maximum value, due to its
non-conflicting traffic. The data switching activity is directly control-
lable by the input sources, and it covers all the intermediate router ports

145

6. Peak-Power Traffic for Networks-on-Chip

PeakPowerTraffic

PeakPowerTraffic PeakPowerTraffic

PeakPowerTraffic

Figure 613: Peak power consumption vs. injection load in homogeneous NoC topologies.
The power consumption triggered by the proposed methodology, as compared to the power
consumed when using uniform-random and bit-complement traffic patterns.

and network links that are utilized by the injected flow. When compared
against uniform-random traffic (Figs. 6.13(a) and (c)), the proposed tech-
nique triggers maximum power consumption, which can be more than
6× higher than the one achieved under uniform-random traffic with
random data (i.e., blue curves).

This is also true when the NoC is driven by uniform-random traffic that
allows contention in the network, but the injected data patterns are the
same as the ones used in the proposed case (by following the guidelines
described in Section 6.2.3). This scenario is also depicted in Figs. 6.13(a)
and (c) with the red curves. The ILP-driven approach still consumes
significantly more power (4× higher), since it simultaneously takes into
account both the network utilization and the data switching activity.

146

6.3. Experimental Evaluation

Similar conclusions are derived when the power consumption of the
NoC is triggered using other permutation traffic patterns, such as bit-
complement traffic. In this case (Figs. 6.13(b) and (d)), the peak power
consumption of the proposed method is 4× larger than the largest power
observed under the bit-complement traffic patterns (red curves).

It should be noted that, at low injection rates, the red curves in Fig. 6.13
(i.e., random traffic scenarios using the data patterns proposed in this
work) are – in some cases – slightly higher than the black curves. How-
ever, this is an artifact of the unpredictability in the data switching ac-
tivity caused by traffic contention. This unpredictability causes large
variance in the recorded peak power consumption, which makes the
maximum value reported in Fig. 6.13 very hard to repeat in a systematic
manner.

Table 62: Peak power of the proposed method vs. the power of a fake scenario, which
assumes that every circuit node switches in every cycle.

@ 1 GHz, 0 .8 V Fake (pessimist ic) Proposed

2D Mesh 4.87 W 1.6 W

Hier. Ring 3.76 W 1.23 W

Finally, we compare the power triggered by the proposed peak-power
traffic, versus the peak-power consumption that corresponds to the fake
scenario of every circuit node switching in every cycle. In both cases de-
picted in Table 6.2, the peak power triggered by the proposed approach
(measured at 100% injection rate) is lower than the one derived using
the fake (un-realistic) approach. The difference between these two max-
imum power values depends on topology characteristics, and the power
expended on the links vs. the power expended within the routers. In
any case, the significant conclusion out of this comparison is that fake
peak-power scenarios overestimate the true maximum power profile of
the NoC and unnecessarily increase the overall system power budget.
With the proposed optimization, worst-case power analysis is brought
closer to what is attainable by a corner-case but realistic traffic pattern.

147

6. Peak-Power Traffic for Networks-on-Chip

6.3.2 Heterogeneous Topologies

In addition to homogeneous topologies, the proposed methodology can
also handle heterogeneous topologies. To test the effectiveness of the ILP-
driven peak-power generation methodology when dealing with hetero-
geneous NoCs, we experimented with the two heterogeneous topologies
shown in Fig. 6.14. The first one involves three voltage/frequency do-
mains assuming homogeneous links of 64 bits, while the second one as-
sumes the same voltage and clock frequency of 1 GHz@0.8 V throughout
the NoC, but includes two different link widths, 64 and 128 bits, follow-
ing a topology similar to the one presented in [93].

1GHz, 0.8V

1.25GHz, 0.9V

1.5GHz, 1V

(a) (b)

Figure 614: Two heterogeneous NoC topologies are evaluated: (a) one that includes multiple
voltage/frequency domains, and (b) one that employs heterogeneous link widths and routers.

Similar to the homogeneous case, we initially compare the peak-power
consumption of the proposed method and a uniform-random traffic
scenario, under the same injection load. The results are depicted in
Fig. 6.15. For each injection load, the maximum instantaneous power
consumption value observed (over 500,000 cycles of simulation) was
recorded. Note that the injection load reported in the x-axis of the di-
agrams of Fig. 6.15 refers to the injection load of the sources with the
lower bandwidth. In Fig. 6.15(a), the injection load refers to the sources
with the lower clock frequency, while, in Fig. 6.15(b), it refers to the
sources with the narrower link width.

148

6.3. Experimental Evaluation

The ILP-based optimization guarantees the generation of non-conflicting
permutation traffic and increases – at the same time – the effective injec-
tion bandwidth between each source and destination pair. This enables
the application of the worst-case traffic pattern, driven by appropriately
selected data, at the maximum possible rate. This property increases the
maximum power observed, as compared to the power observed when
driving the NoC with a uniform-random traffic pattern. Even if the ran-
dom traffic uses the proposed worst-case data patterns, it still produces
2× lower power consumption than the proposed traffic. The conflicting
nature of uniform-random traffic inevitably saturates the NoC, thus lim-
iting the maximum utilization and, effectively, the power consumption
that can be observed within the NoC.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1

P
e
a
k
 P

o
w

e
r

(W
)

Inject Load (Flits/Node/Cycle)

PeakPowerTraffic
UR-RandomData

UR-MaxPowerData

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

P
e
a
k
 P

o
w

e
r

(W
)

Inject Load (Flits/Node/Cycle)

PeakPowerTraffic
UR-RandomData

UR-MaxPowerData

(b) Heterogeneous Link Widths(a) Multiple Voltage Domains

Figure 615: Peak power consumption vs. injection load in heterogeneous NoC topolo-
gies. The power consumption triggered by the proposed method, as compared to the power
consumed when using uniform-random traffic patterns in the two examined heterogeneous
topologies.

In the last set of experiments, we further highlight the need for non-
conflicting traffic that would guarantee the control of the data switch-
ing activity in all NoC components, while still offering maximum NoC
component utilization. We relax some of the constraints of the ILP to
produce one additional traffic pattern that fully utilizes all NoC com-
ponents, but it allows contention during packet network traversal. In this
scenario, each NoC source is allowed to send traffic to multiple desti-
nations, and each destination can receive traffic from multiple sources.
The ILP selects the appropriate percentage of traffic injected for each

149

6. Peak-Power Traffic for Networks-on-Chip

source-destination pair that guarantees maximum link utilization, but
without guaranteeing contention-free network traversal. The derived
traffic resembles the traffic that is produced by a maximum-flow-like al-
gorithm [21], with the restriction that the traffic that floods the network
links should use paths that are allowed by the routing algorithm.

Traffic is injected at the maximum possible rate for 500,000 cycles, us-
ing the the data patterns proposed in Section 6.2.3. The four highest
recorded power values when using these traffic patterns – that allow for
network contention – are included in the diagrams shown in Fig. 6.16,
next to the peak-power consumption derived by the proposed method,
assuming full injection throughput. The largest power measurements
recorded for the generated traffic were always lower than the power
triggered by the proposed methodology: 32% lower in the case of NoC
topologies with multiple voltage domains (Fig. 6.16(a)), and 36% lower
in NoCs with heterogeneous link widths (Fig. 6.16(b)). This result is a
direct consequence of the contention that appears in the NoC, which,
inevitably, (a) leaves some links unutilized for some cycles during the
NoC’s operation, and (b) destroys any predictability in the data switch-
ing activity.

The appropriate permutation traffic patterns that yield extremely high
link utilization constitute an extremely small subset of the entire set of
possible permutation traffic patterns. Therefore, randomly deriving an
effective permutation traffic pattern, without relying on the proposed
ILP formulation, should not be considered a viable/safe option.

To test this argument, we randomly generated 100,000 permutation traf-
fic patterns (self-traffic was not allowed), and, for each one, we measured
the peak-power consumption after injecting traffic at the maximum pos-
sible rate for 500,000 cycles. The four highest peak-power measurements
recorded were also included in the diagrams shown in Fig. 6.16. The
highest power measurements we got for the randomly generated traffic
were always significantly lower than the power triggered by the pro-
posed method.

150

6.4. Conclusions

Random Permutation Traffic

Peak Power Traffic Full-Utilization Conflicting Traffic

1.2

1

0

0.2

0.4

0.6

0.8

T
o
ta

l
P
o
w

e
r

(W
)

#1 #2 #3 #4

(b) Heterogeneous Link Widths

1.4

0

1.2

1

0.8

0.6

0.4

0.2T
o
ta

l
P
o
w

e
r

(W
)

#1 #2 #3 #4

(a) Multiple Voltage Domains

Random Permutation Traffic

Peak Power Traffic Full-Utilization Conflicting Traffic

Figure 616: The peak-power consumption observed using (1) the proposed methodology, (2)
the four best (in terms of peak-power consumption) traffic patterns that allow for contention
within the NoC, and (3) the four best (in terms of peak-power consumption) permutation
traffic patterns among 100K randomly generated patterns.

6.4 Conclusions

As chips become increasingly more dense and complex, power con-
sumption becomes a primary design constraint. It is imperative for
designers to realistically estimate a design’s peak power consumption,
which directly impacts other salient system attributes, such as perfor-
mance, implementation costs, battery life, and reliability. This work
introduces a fully-automated high-level methodology to generate ap-
propriate traffic and data patterns that cause peak power consumption
within the NoC. The peak power consumption triggered by the pro-
posed method is, on average, 4× higher (up to 8× higher) than what is

151

6. Peak-Power Traffic for Networks-on-Chip

observed after simulating random traffic and data patterns.

The introduced ILP-based optimization enables the power maximization
of the majority of NoC components, irrespective of their differentiated
design parameters. Heterogeneous and homogeneous NoCs are han-
dled in a unified manner, allowing for the generation of appropriate
traffic patterns – even for large topologies – within reasonable execution
time.

152

Chapter 7

Conclusions

7.1 Summary

As the size of CMPs and SoCs continues to grow, and with the increas-
ing use of mobile devices, finding an efficient solution to address the
on-chip communication constraints becomes a major challenge. NoCs
have been established as the dominant communication medium, due
to their modular approach, their physical scalability, and ease of inte-
gration. NoCs must provide high communication throughput and low-
latency transfers, as well as QoS guarantees. These features must be
provided in efficient hardware implementations that satisfy tight timing,
area, and power constraints. This thesis tries to address these challenges
for power-efficient NoC design and implementations.

The first presented solution optimizes the buffer architecture of the NoC
router. The proposed architecture, called ElastiStore, can efficiently
merge elastic operation and buffering with VC flow control. It is a novel
lightweight EB architecture that minimizes buffering requirements with-
out sacrificing performance. ElastiStore can be adopted at the inputs
and the outputs of NoC routers, covering the requirements of round-
trip time arising from the pipelined organization of the router micro-
architecture. ElastiStore-based routers enable the design of low-cost
routers with significant area and power savings without sacrificing any
network performance, as verified using simulations with both synthetic
traffic and real application workloads.

153

7. Conclusions

With the use of the new buffer architecture, the second solution pre-
sented in this thesis employs a novel distributed VC-based router archi-
tecture. The proposed ElastiNoC design allows for modular pipelined
organizations that increase the clock frequency with the utilization of
an efficient buffering strategy. Additionally, it offers maximum freedom
in terms of physical placement, by allowing the NoC components to be
physically spread throughout the chip, irrespective of the network topol-
ogy. Moreover, ElastiNoC has a fully distributed Built-In Self Testability
(BIST) functionality that reaches high fault coverage with small test ap-
plication time.

In the third research part of the thesis, we aim to reduce the clock-tree
power consumption with Multi-bit Register (MBR) composition. MBR
composition reduces the complexity of the clock tree by reducing the
number of clock sinks, thus shortening the clock tree’s wire length,
which decreases the wire capacitance. We present a complete MBR com-
position flow that explores almost every aspect involved in the use of
MBRs during physical design. We introduce an MBR decomposition
step to remove some of the timing incompatibilities derived after the
placement of the original netlist. Then, registers are merged to form
larger MBRs as a result of an ILP-based optimization that uses new and
realistic rules that determine register compatibility. We permit the use
of incomplete MBRs to achieve additional MBR composition. The com-
bined effect of these steps gives significant reduction in register count,
and, together with the timing-driven sizing of the MBRs, it effectively
reduces clock-pin capacitance. The benefits are shown across industrial
benchmarks.

The final contribution of this thesis is a high-level systematic method-
ology for generating the appropriate traffic patterns that trigger the
peak power consumption in a NoC. This work tries to identify a re-
alistic estimation of a design’s peak power consumption, as it directly
impacts other salient system attributes, such as performance, implemen-
tation costs, battery life, and reliability. It introduces a fully-automated
methodology to produce appropriate traffic and data patterns that cause
peak power consumption within the NoC. This novel methodology uses
an ILP-based mechanism to enable the power maximization of the ma-
jority of NoC components, irrespective of their differentiated design pa-

154

7.2. Future Work

rameters. It can handle both heterogeneous and homogeneous NoCs
and allows the generation of suitable traffic patterns within reasonable
execution time.

7.2 Future Work
The proposed solutions in this thesis cover multiple aspects of NoC
design, offering power-efficient approaches without sacrificing network
performance. Although the presented solutions represent a mature set
of optimized designs, there are still many opportunities left for future
improvements.

As far as ElastiStore buffers are concerned, the main planned activity
involves the addition of support to dynamically change the number of
active VCs, and redistributing – in a cost-efficient manner – the available
private buffering resources. At the moment, each VC statically receives
at least one private buffer slot, even if it is totally inactive. These private
buffers do not constitute a significant hardware overhead. However, our
future plans are to let them be reused by others VCs in a programmable
manner. This feature will certainly increase VC buffer utilization, but on
the other hand, it will remove the simplicity of the proposed architecture
and its low-cost nature. Our goal is to tackle efficiently this inherent
cost-benefit tradeoff.

In parallel, regarding the ElastiNoC architecture, our goal is to test it
under real industrial chip floorplans, where the distributed nature of
the design will provide the most benefits. Even if the obtained ex-
perimental results are very promising, more realistic testcases will be
valuable in understanding ElastiNoC’s full potential. Also, in the same
context, we plan to test ElastiNoC using higher-radix merge units. At
the present moment, the VC-based merged units switch two inputs to
one output, offering a balanced pipelined implementation. Higher-radix
merge units will reduce the latency in terms of number hops, but will
decrease the clock frequency of the design, increase the NoC’s link wire-
length, and, inevitably, also increase the routing congestion (more and
longer wires need to be brought to the same place in the layout). Explor-
ing this part of the design space will add more value to the proposed
architecture.

155

7. Conclusions

MBR composition is an effective way to reduce clock-tree complexity.
However, the overall benefits depend on the number and the distribu-
tion of the buffers in the NoC. The larger the number of buffers, the
larger the expected savings in the clock and the larger the overall com-
plexity of the NoC. Reducing the number of buffers and simplifying
their design is a constant demand for NoCs that is also tackled in this
thesis. Reducing the amount of buffering decreases the NoC’s area and
datapath power, but negatively affects performance (albeit slightly, if
done correctly). On the other hand, MBR composition can save a lot
from the clock-tree power, since it merges the buffers in to fewer but
larger register cells. Therefore, MBR composition renders the need for
buffer cost reduction less demanding, which, consequently, leaves room
for lower NoC network performance degradation. Identifying the opti-
mal balance point between the two approaches is the planned target of
our future work on this topic.

Finally, the automatic generation methodology of peak-power traffic
patterns focuses on maximizing the power consumption of the core of
the NoC, i.e., the NoC routers and links. The derived traffic patterns can
be applied as a corner-case scenario during hardware simulation/verifi-
cation. Our future work will focus on extending this methodology to the
generation of equivalent read/write transaction-level traffic, which can
be reproduced at the software level. This effort involves the inclusion of
AMBA AXI compatible network interfaces and taking into account their
injection/ejection limitations and the support of out-of-order transac-
tions.

156

Bibliography

[1] Niket Agarwal, Tushar Krishna, Li-Shiuan Peh, and Niraj K. Jha.
GARNET: A detailed on-chip network model inside a full-system
simulator. In Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, pages 33–42, April
2009.

[2] James Balfour and William J. Dally. Design tradeoffs for tiled cmp
on-chip networks. In Proceedings of the 20th Annual International
Conference on Supercomputing (ICS), pages 187–198, 2006.

[3] A.O. Balkan, Gang Qu, and U. Vishkin. Mesh-of-trees and alter-
native interconnection networks for single-chip parallelism. IEEE
Transactions on VLSI Systems, 17(10):1419–1432, Oct 2009.

[4] A. Banerjee, P. T. Wolkotte, R. D. Mullins, S. W. Moore, and
G. Smit. An energy and performance exploration of network-on-
chip architectures. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 17(3):319–329, Mar 2009.

[5] Daniel U Becker, Nan Jiang, George Michelogiannakis, and
William J Dally. Adaptive backpressure: Efficient buffer manage-
ment for on-chip networks. In Intern. Conf. on Computer Design,
pages 419–426, 2012.

[6] Davide Bertozzi, Luca Benini, and Giovanni De Micheli. Error
control schemes for on-chip communication links: The energy-

157

Bibliography

reliability tradeoff. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 24(6):818–831, Nov 2006.

[7] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.
The PARSEC benchmark suite: Characterization and architectural
implications. In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques, pages 72–81, Octo-
ber 2008.

[8] Paul Bogdan, Radu Marculescu, and Siddharth Jain. Dynamic
power management for multidomain system-on-chip platforms:
An optimal control approach. ACM Transactions on Design Automa-
tion of Electronic Systems (TODAES), 18(4):46:1–46:20, Oct. 2013.

[9] S. Borkar and A. Chien. The future of microprocessors. Commun.
ACM, 54(5):67–77, May 2011.

[10] Philippe Boucard and Luc Montperrus. Message switching sys-
tem. US Patent 7639704, Arteris, 2009.

[11] Coen Bron and Joep Kerbosch. Algorithm 457: Finding all cliques
of an undirected graph. Communications of the ACM, 16(9):575–577,
Sept 1973.

[12] Luca P. Carloni and Alberto L. Sangiovanni-Vincentelli. Coping
with latency in soc design. IEEE Micro, 22(5):24–35, Sept 2002.

[13] Mario R. Casu and Paolo Giaccone. Rate-based vs delay-based
control for dvfs in noc. In Proceedings of the 2015 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pages 1096–1101,
2015.

[14] C. O. Chen, S. Park, T. Krishna, S. Subramanian, A. P. Chan-
drakasan, and L. Peh. Smart: A single-cycle reconfigurable noc
for soc applications. In Proceedings of the 2013 Design, Automation
Test in Europe Conference Exhibition (DATE), pages 338–343, March
2013.

[15] L. Chen, D. Zhu, M. Pedram, and T. M. Pinkston. Power punch:
Towards non-blocking power-gating of noc routers. In Proceedings

158

Bibliography

of the 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA), pages 378–389, Feb 2015.

[16] Lizhong Chen and Timothy M. Pinkston. Nord: Node-router de-
coupling for effective power-gating of on-chip routers. In Proceed-
ings of the 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 270–281, 2012.

[17] Xi Chen, Zheng Xu, Hyungjun Kim, Paul V. Gratz, Jiang Hu,
Michael Kishinevsky, Umit Ogras, and Raid Ayoub. Dynamic volt-
age and frequency scaling for shared resources in multicore pro-
cessor designs. In Proceedings of the 50th Annual Design Automation
Conference (DAC), pages 114:1–114:7, 2013.

[18] Zhi-Wei Chen and Jin-Tai Yan. Routability-constrained multi-bit
flip-flop construction for clock power reduction. Integration, the
VLSI Journal, 46(3):290–300, June 2013.

[19] Wing-Kai Chow, Chak-Wa Pui, and Evangeline F. Y. Young. Legal-
ization algorithm for multiple-row height standard cell design. In
Proceedings of the 53rd Annual Design Automation Conference (DAC),
pages 83:1–83:6, 2016.

[20] Nicola Concer, Michele Petracca, and Luca P. Carloni. Distributed
flit-buffer flow control for networks-on-chip. In Proceedings of the
6th IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, pages 215–220, 2008.

[21] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms, Third Edition. The MIT
Press, 3rd edition, 2009.

[22] J. Cortadella, M. Kishinevsky, and B. Grundmann. Synthesis of
Synchronous Elastic Architectures. In Proceedings ACM/IEEE De-
sign Automation Conference (DAC), pages 657–662, July 2006.

[23] W. J. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R. C. Harting,
V. Parikh, J. Park, and D. Sheffield. Efficient embedded comput-
ing. Computer, 41(7):27–32, July 2008.

159

Bibliography

[24] W. J. Dally and B. Towles. Route packets, not wires: On-chip inter-
connection networks. In Proceedings of the 38th Design Automation
Conference (DAC), pages 684–689, June 2001.

[25] William J. Dally, Chris Malachowsky, and Stephen W. Keckler. 21st
century digital design tools. In Proceedings of the 50th Annual De-
sign Automation Conference (DAC), pages 94:1–94:6, 2013.

[26] C. R. Das, M. S. Yousif, V. Narayanan, Dongkook Park,
C. Nicopoulos, Jongman Kim, C. R. Das, M. S. Yousif,
V. Narayanan, Dongkook Park, C. Nicopoulos, and Jongman Kim.
A gracefully degrading and energy-efficient modular router archi-
tecture for on-chip networks. In Proceedings of the 33rd International
Symposium on Computer Architecture (ISCA’06), pages 4–15, June
2006.

[27] R. Das, A. K. Mishra, C. Nicopoulos, D. Park, V. Narayanan,
R. Iyer, M. S. Yousif, and C. R. Das. Performance and power
optimization through data compression in network-on-chip archi-
tectures. In Proceedings of the 2008 IEEE 14th International Sympo-
sium on High Performance Computer Architecture, pages 215–225, Feb
2008.

[28] Reetuparna Das, Satish Narayanasamy, Sudhir K. Satpathy, and
Ronald G. Dreslinski. Catnap: Energy proportional multiple
network-on-chip. In Proceedings of the 40th Annual International
Symposium on Computer Architecture (ISCA), pages 320–331, 2013.

[29] B. K. Daya, C. O. Chen, S. Subramanian, W. Kwon, S. Park, T. Kr-
ishna, J. Holt, A. P. Chandrakasan, and L. Peh. Scorpio: A 36-
core research chip demonstrating snoopy coherence on a scalable
mesh noc with in-network ordering. In 2014 ACM/IEEE 41st Inter-
national Symposium on Computer Architecture (ISCA), pages 25–36,
June 2014.

[30] Bhavya K. Daya, Li-Shiuan Peh, and Anantha P. Chandrakasan.
Quest for high-performance bufferless nocs with single-cycle ex-
press paths and self-learning throttling. In Proceedings of the 53rd

160

Bibliography

Annual Design Automation Conference (DAC), pages 36:1–36:6, Aug
2016.

[31] Giorgos Dimitrakopoulos, Nikos Chrysos, and Costas Galanopou-
los. Fast arbiters for on-chip network switches. In IEEE Interna-
tional Conference on Computer Design (ICCD), pages 664–670, 2008.

[32] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan
Sankaralingam, and Doug Burger. Dark silicon and the end of
multicore scaling. In Proceedings of the 38th Annual International
Symposium on Computer Architecture (ISCA), pages 365–376, 2011.

[33] John P. Fishburn. Clock skew optimization. IEEE Transactions on
Computers, 39(7):945–951, July 1990.

[34] J. Flich, A. Mejia, P. Lopez, and J. Duato. Region-based routing:
An efficient routing mechanism to tackle unreliable hardware in
networks on chip. In Proceedings of the 2007 ACM/IEEE International
Symposium on Networks-on-Chip (NOCS), 2007.

[35] K. Ganesan, J. Jo, W. Bircher, D. Kaseridis, Z. Yu, and L. John.
System-level max power (sympo): A systematic approach for es-
calating system-level power consumption using synthetic bench-
marks. In Int. Conf. on Parallel Architectures and Compilation Tech-
niques (PACT), 2010.

[36] Karthik Ganesan and Lizy K. John. Maximum multicore power
(mampo): An automatic multithreaded synthetic power virus gen-
eration framework for multicore systems. In ACM Intern. Conf. for
High Performance Computing, Networking, Storage and Analysis (SC),
2011.

[37] F. Gilabert, M. E. Gomez, S. Medardoni, and D. Bertozzi. Im-
proved utilization of noc channel bandwidth by switch replication
for cost-effective multi-processor systems-on-chip. In Proceedings
of the 2010 Fourth ACM/IEEE International Symposium on Networks-
on-Chip, pages 165–172, May 2010.

[38] R. Golshan and B. Haroun. A novel reduced swing cmos bus inter-
face circuit for high speed low power vlsi systems. In Proceedings

161

Bibliography

of IEEE International Symposium on Circuits and Systems - ISCAS ’94,
volume 4, pages 351–354, May 1994.

[39] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu. A QoS-Enabled
On-Die Interconnect Fabric for Kilo-Node Chips. IEEE Micro,
32(3), May 2012.

[40] Linley Gwennap. Low-power design using noc technology. The
Linley Group, May 2015.

[41] Syed Minhaj Hassan and Sudhakar Yalamanchili. Centralized
buffer router: A low latency, low power router for high radix
nocs. In IEEE/ACM International Symposium on Network on Chip,
April 2013.

[42] M. Hayenga, N. Enright Jerger, and M. Lipasti. Scarab: A single
cycle adaptive routing and bufferless network. In Proceedings of
the 42nd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pages 244–254, Dec 2009.

[43] Robert Hesse and Natalie Enright Jerger. Improving dvfs in nocs
with coherence prediction. In Proceedings of the 2015 Ninth Inter-
national Symposium on Networks-on-Chip (NOCS), pages 24:1–24:8,
2015.

[44] Robert Hesse, Jeff Nicholls, and Natalie D. Enright Jerger. Fine-
grained bandwidth adaptivity in networks-on-chip using bidirec-
tional channels. In 6th IEEE/ACM Intern. Symp. on Networks on
Chip, pages 132–141, 2012.

[45] M. Hiraki, H. Kojima, H. Misawa, T. Akazawa, and Y. Hatano.
Data-dependent logic swing internal bus architecture for ultralow-
power lsi’s. IEEE Journal of Solid-State Circuits, 30(4):397–402, April
1995.

[46] Byungchul Hong, Brian Huang, and Jonah Probell. The rubber
jigsaw puzzle floorplanning for network-on-chip. In Proceedings of
the 2018 Synopsys Users Group (SNUG), SNUG ’15, 2015.

162

Bibliography

[47] A. Hopkins. The functional safety imperative in automotive de-
sign. Whitepaper ARM, Sept 2016.

[48] Michael N. Horak, Steven M. Nowick, Matthew Carlberg, and Uzi
Vishkin. A low-overhead asynchronous interconnection network
for gals chip multiprocessors. In Proc. of Symp. on Networks-on-
Chip, pages 43–50, 2010.

[49] M. Horowitz, E. Alon, D. Patil, S. Naffziger, Rajesh Kumar, and
K. Bernstein. Scaling, power, and the future of cmos. In IEEE
InternationalElectron Devices Meeting, 2005. IEDM Technical Digest.,
pages 7–15, Dec 2005.

[50] Yatin Hoskote, Sriram Vangal, Arvind Singh, Nitin Borkar, and
Shekhar Borkar. A 5-GHz mesh interconnect for a teraflops pro-
cessor. IEEE Micro, 27(5):51–61, Sept 2007.

[51] Wenting Hou, Dick Liu, and Pei-Hsin Ho. Automatic register
banking for low-power clock trees. In Proceedings of the 2009 10th
International Symposium on Quality of Electronic Design, pages 647–
652, 2009.

[52] Michael S. Hsiao, Elizabeth M. Rudnick, and Janak H. Patel. Dy-
namic state traversal for sequential circuit test generation. ACM
Trans. Des. Autom. Electron. Syst., 5(3):548–565, July 2000.

[53] C. Hsu, Y. Chang, and M. P. Lin. Crosstalk-aware power opti-
mization with multi-bit flip-flops. In Proceedings of the 17th Asia
and South Pacific Design Automation Conference (ASP-DAC), pages
431–436, Jan 2012.

[54] W. Huang, K. Rajamani, M. R. Stan, and K. Skadron. Scaling with
design constraints: Predicting the future of big chips. IEEE Micro,
31(4):16–29, July 2011.

[55] Arteris Inc. A comparison of network-on-chip and
busses. https://www.design-reuse.com/articles/10496/
a-comparison-of-network-on-chip-and-busses.html.

163

Bibliography

[56] Gurobi Optimization Inc. Gurobi optimizer reference manual.
https://www.gurobi.com/documentation/7.0/refman/index.
html.

[57] Wind River Inc. Simics, product overview.

[58] Charles Janac. Physical interconnect aware network optimizer:
Interconnect physical optimization. In Proceedings of the 2018 on
International Symposium on Physical Design (ISPD), March 2018.

[59] Natalie Enright Jerger, Tushar Krishna, and Li-Shiuan Peh. On-
Chip Networks: Second Edition. Morgan & Claypool Publishers, 2nd
edition, 2017.

[60] I. H. Jiang, C. Chang, and Y. Yang. Integra: Fast multibit flip-flop
clustering for clock power saving. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 31(2):192–204, Feb
2012.

[61] Y. Jin, E. J. Kim, and K. H. Yum. Peak power control for a QoS
capable on-chip network. In International Conference on Parallel Pro-
cessing (ICPP), pages 585–592, 2005.

[62] Yuho Jin, K. H. Yum, and E. J. Kim. Adaptive data compression
for high-performance low-power on-chip networks. In Proceedings
of the 2008 41st IEEE/ACM International Symposium on Microarchi-
tecture, pages 354–363, Nov 2008.

[63] Andrew B. Kahng, Bin Li, Li-Shiuan Peh, and Kambiz Samadi.
Orion 2.0: A fast and accurate noc power and area model for early-
stage design space exploration. In Proceedings of the Conference on
Design, Automation and Test in Europe, pages 423–428, 2009.

[64] Andrew B. Kahng, Jiajia Li, and Lutong Wang. Improved flop tray-
based design implementation for power reduction. In Proceedings
of the 35th International Conference on Computer-Aided Design (IC-
CAD), pages 20:1–20:8, 2016.

[65] M.R. Kakoee, V. Bertacco, and L. Benini. A distributed and
topology-agnostic approach for on-line noc testing. In Proceed-

164

Bibliography

ings of the ACM/IEEE International Symposium on Networks-on-Chip
(NOCS, pages 113–120, May 2011.

[66] G. Kim, J. Kim, and S. Yoo. Flexibuffer: reducing leakage power
in on-chip network routers. In Proceedings of the 48th Design Au-
tomation Conference, DAC, pages 936–941, 2011.

[67] Hyungjun Kim, Pritha Ghoshal, Boris Grot, Paul V. Gratz, and
Daniel A. Jiménez. Reducing network-on-chip energy consump-
tion through spatial locality speculation. In Proceedings of the 5th
ACM/IEEE International Symposium on Networks-on-Chip (NOCS),
pages 233–240, 2011.

[68] J. Kim, J. Balfour, and W. J. Dally. Flattened butterfly topology
for on-chip networks. In Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 172–182, 2007.

[69] John Kim. Low-cost router microarchitecture for on-chip net-
works. In Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 255–266, Dec.
2009.

[70] N. S. Kim, T. Austin, T. Mudge, and D. Grunwald. Challenges for
Architectural Level Power Modeling. Springer, 2002.

[71] Johann Knechtel and Jens Lienig. Physical design automation for
3d chip stacks: Challenges and solutions. In Proceedings of the 2016
on International Symposium on Physical Design (ISPD), pages 3–10,
2016.

[72] A. K. Kodi, A. Sarathy, and A. Louri. ideal: Inter-router dual-
function energy and area-efficient links for network-on-chip (noc)
architectures. In Proc. of Intern Symp. on Comp. Architecture, pages
241–250, 2008.

[73] V. Kontorinis, A. Shayan, D. Tullsen, and R. Kumar. Reducing
peak power with a table-driven adaptive processor core. In Intern.
Symp. on Microarchitecture, pages 189–200, 2009.

165

Bibliography

[74] E. D. Kyriakis-Bitzaros and S. S. Nikolaidis. Design of low power
cmos drivers based on charge recycling. In Proceedings of 1997
IEEE International Symposium on Circuits and Systems. Circuits and
Systems in the Information Age ISCAS ’97, volume 3, pages 1924–
1927, June 1997.

[75] Mark Lapedus. Interconnect challenges rising. Semiconductor
engineering, June 2016.

[76] K. Latif, A.-M. Rahmani, Liang Guang, T. Seceleanu, and H. Ten-
hunen. Pvs-noc: Partial virtual channel sharing noc architec-
ture. In Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), pages 470–477, Feb 2011.

[77] H. K. Lee and D. S. Ha. Hope: An efficient parallel fault simula-
tor for synchronous sequential circuits. In Proc. of the ACM/IEEE
Design Automation Conference (DAC), pages 336–340, 1992.

[78] T. Lee, D. Z. Pan, and J. Yang. Clock network optimization with
multibit flip-flop generation considering multicorner multimode
timing constraint. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 37(1):245–256, Jan 2018.

[79] M. P. Lin, C. Hsu, and Y. Chen. Clock-tree aware multibit flip-flop
generation during placement for power optimization. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
34(2):280–292, Feb 2015.

[80] Sean Shih-Ying Liu, Wan-Ting Lo, Chieh-Jui Lee, and Hung-Ming
Chen. Agglomerative-based flip-flop merging and relocation for
signal wirelength and clock tree optimization. ACM Transactions
on Design Automation of Electronic Systems (TODAES), 18(3):40:1–
40:20, July 2013.

[81] Shih-Chuan Lo, Chih-Cheng Hsu, and Mark Po-Hung Lin. Power
optimization for clock network with clock gate cloning and flip-
flop merging. In Proceedings of the 2014 on International Symposium
on Physical Design (ISPD), pages 77–84, 2014.

166

Bibliography

[82] Ye Lu, Changlin Chen, John V. McCanny, and Sakir Sezer. Design
of interlock-free combined allocators for networks-on-chip. In EEE
25th International SOC Conference (SoCC), pages 358–363, 2012.

[83] S. Ma, N. Enright Jerger, and Z. Wang. Whole Packet Forward-
ing: Efficient Design of Fully Adaptive Routing Algorithms for
Networks-on-Chip. In Proc. of the Intern. Symp. on High Performance
Computer Architecture, pages 467–478, Feb. 2012.

[84] Sheng Ma, Libo Huang, Mingche Lai, Wei Shi, and Zhiying Wang.
Networks-on-Chip: From Implementations to Programming Paradigms.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st
edition, 2014.

[85] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann,
Michael R. Marty, Min Xu, Alaa R. Alameldeen, Kevin E. Moore,
Mark D. Hill, and David A. Wood. Multifacet’s general execution-
driven multiprocessor simulator (gems) toolset. ACM SIGARCH
Computer Architecture News, 33(4):92–99, Nov 2005.

[86] H. Matsutani, Y. Hirata, M. Koibuchi, K. Usami, H. Nakamura,
and H. Amano. A multi-vdd dynamic variable-pipeline on-chip
router for cmps. In Proceedings of the 17th Asia and South Pacific
Design Automation Conference (ASPDAC), pages 407–412, Jan 2012.

[87] Mentor Graphics. Logic BIST Applications and Usage Whitepaper.
In Silicon Test and Yield Analysis, 2010.

[88] G. De Micheli, C. Seiculescu, S. Murali, L. Benini, F. Angiolini,
and A. Pullini. Networks on chips: From research to products. In
Proceedings of the 47th Annual Design Automation Conference (DAC),
2010.

[89] G. Michelogiannakis, J. Balfour, and W. J. Dally. Elastic buffer
flow control for on-chip networks. In IEEE Int. Symp. on High
Performance Computer Architecture, 2009.

[90] G. Michelogiannakis and W.J. Dally. Elastic buffer flow control for
on-chip networks. IEEE Trans. on Computers, 62(2), Feb. 2013.

167

Bibliography

[91] G. Michelogiannakis, N.Jiang, D.Becker, and W.J.Dally. Packet
chaining: Efficient single-cycle allocation for on-chip networks. In
Proc. IEEE/ACM In. Symp. on Microarchitecture (MICRO), pages 83–
94, 2011.

[92] Asit K. Mishra, Reetuparna Das, Soumya Eachempati, Ravi Iyer,
N. Vijaykrishnan, and Chita R. Das. A case for dynamic frequency
tuning in on-chip networks. In Proceedings of the 42Nd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO
42, pages 292–303, 2009.

[93] Asit K. Mishra, N. Vijaykrishnan, and Chita R. Das. A case for het-
erogeneous on-chip interconnects for cmps. In Proc. of the intern.
symp. on Computer architecture, ISCA ’11, pages 389–400, 2011.

[94] Konstantin Moiseev, Avinoam Kolodny, and Shmuel Wimer.
Multi-Net Optimization of VLSI Interconnect. Springer Publishing
Company, Inc., 2014.

[95] H. Moon and T. Kim. Design and allocation of loosely coupled
multi-bit flip-flops for power reduction in post-placement opti-
mization. In Proceedings of the 2016 21st Asia and South Pacific De-
sign Automation Conference (ASP-DAC), pages 268–273, Jan 2016.

[96] Thomas Moscibroda and Onur Mutlu. A case for bufferless rout-
ing in on-chip networks. In Proceedings of the 36th International
Symposium on Computer Architectur. IEEE, June 2009.

[97] Robert D. Mullins. Minimising dynamic power consumption in
on-chip networks. In Proceedings of the 2006 International Sympo-
sium on System-on-Chip, pages 1–4, Nov 2006.

[98] Robert D. Mullins, Andrew F. West, and Simon W. Moore. Low-
latency virtual-channel routers for on-chip networks. In Proceed-
ings of the International Symposium on Computer Architecture, pages
188–197, June 2004.

[99] K. Najeeb, V. Vardhan, R. Konda, S. Kumar, S. Hari, V. Kamakoti,
and V. M. Vedula. Power virus generation using behavioral mod-

168

Bibliography

els of circuits. In Proc. of the 25th IEEE VLSI Test Symposium
(VTS’07), pages 35–42, May 2007.

[100] T. Nakamura, H. Matsutani, M. Koibuchi, K. Usami, and
H. Amano. Fine-grained power control using a multi-voltage vari-
able pipeline router. In Proceedings of the 2012 IEEE 6th International
Symposium on Embedded Multicore SoCs, pages 59–66, Sept 2012.

[101] M. H. Neishaburi and Zeljko Zilic. Reliability aware noc router
architecture using input channel buffer sharing. In Proceedings of
the 19th ACM Great Lakes Symposium on VLSI, pages 511–516, 2009.

[102] Nan Ni, Marius Pirvu, and Laxmi N. Bhuyan. Circular buffered
switch design with wormhole routing and virtual channels. In
ICCD, pages 466–473, 1998.

[103] C. A. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, M. S. Yousif,
and C. R. Das. Vichar: A dynamic virtual channel regulator
for network-on-chip routers. In Proceedings of the 2006 39th An-
nual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO’06), pages 333–346, Dec 2006.

[104] Ritesh Parikh, Reetuparna Das, and Valeria Bertacco. Power-aware
nocs through routing and topology reconfiguration. In Proceed-
ings of the 51st Annual Design Automation Conference (DAC), pages
162:1–162:6, 2014.

[105] J. Park, B. W. O’Krafka, S. Vassiliadis, and J. Delgado-Frias. De-
sign and evaluation of a damq multiprocessor network with self-
compacting buffers. In Proceedings of the 1994 ACM/IEEE Confer-
ence on Supercomputing, Supercomputing ’94, pages 713–722. IEEE
Computer Society Press, 1994.

[106] Sunghyun Park. Low-Swing Signaling for Energy Efficient on-chip
Networks. PhD thesis, Massachusetts Institute of Technology, Dept.
of Electrical Engineering and Computer Science, 2011.

[107] Sudeep Pasricha and Nikil Dutt. On-Chip Communication Architec-
tures: System on Chip Interconnect. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2008.

169

Bibliography

[108] Li-Shiuan Peh and William J. Dally. A delay model and speculative
architecture for pipelined routers. In Proceedings of the 7th IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 255–266, Jan 2001.

[109] M. Petracca and L. Carloni. The benefits of using clock gating
in the design of networks-on-chip. Columbia University Computer
Science Technical Reports, 2011.

[110] J. Philip, S. Kumar, E. Norige, M. Hassan, and S. Mitra. Automatic
construction of deadlock free interconnects. US Patent 9244880,
Netspeed Systems, 2016.

[111] S. Polfliet, F. Ryckbosch, and L. Eeckhout. Automated full-system
power characterization. IEEE Micro, pages 46–59, May 2011.

[112] J. Postman, T. Krishna, C. Edmonds, L. Peh, and P. Chiang.
Swift: A low-power network-on-chip implementing the token
flow control router architecture with swing-reduced interconnects.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
21(8):1432–1446, Aug 2013.

[113] A. Rahimi, I. Loi, M.R. Kakoee, and L. Benini. A fully-
synthesizable single-cycle interconnection network for shared-l1
processor clusters. In DATE, pages 1–6, March 2011.

[114] P. Ren, X. Ren, S. Sane, M. A. Kinsy, and N. Zheng. A deadlock-
free and connectivity-guaranteed methodology for achieving
fault-tolerance in on-chip networks. IEEE Transactions on Comput-
ers, 65(2):353–366, Feb 2016.

[115] A. Roca, J. Flich, and G. Dimitrakopoulos. Desa: Distributed elas-
tic switch architecture for efficient networks-on-fpgas. In Field Pro-
grammable Logic and Applications (FPL), pages 394–399, Aug 2012.

[116] Antoni Roca, Carles Hernndez, Jose Flich, Federico Silla, and Jose
Duato. Silicon-aware distributed switch architecture for on-chip
networks. Journal of Systems Architecture, 59(7):505 – 515, 2013.

170

Bibliography

[117] Tajana Simunic Rosing, Kresimir Mihic, and Giovanni De Micheli.
Power and reliability management of socs. IEEE Trans. VLSI, 15(4),
April 2007.

[118] Xavier Van Ruymbeke. Benefits of network on chip fabrics for
late stage design changes, adaptive qos and floorplan selection.
ChipEX, April 2014.

[119] P. Salihundam, S. Jain, T. Jacob, S. Kumar, V. Erraguntla,
Y. Hoskote, S. Vangal, G. Ruhl, P. Kundu, and N. Borkar. A 2Tb/s
6x4 Mesh Network with DVFS and 2.3Tb/s/W router in 45nm
CMOS. In Proceedings of the 2010 Symposium on VLSI Circuits, pages
79–80, June 2010.

[120] Ahmad Samih, Ren Wang, Anil Krishna, Christian Maciocco,
Charlie Tai, and Yan Solihin. Energy-efficient interconnect via
router parking. In Proceedings of the 2013 IEEE 19th International
Symposium on High Performance Computer Architecture (HPCA),
HPCA ’13, pages 508–519, 2013.

[121] Prashant Saxena. Routing Congestion in VLSI Circuits: Estimation
and Optimization. Springer Publishing Company, Inc., 2007.

[122] I. Seitanidis, G. Dimitrakopoulos, P. Mattheakis, L. Masse-Navette,
and D. Chinnery. Timing driven incremental multi-bit register
composition using a placement-aware ilp formulation. In Proceed-
ings of the 2017 54th ACM/EDAC/IEEE Design Automation Confer-
ence (DAC), pages 1–6, June 2017.

[123] I. Seitanidis, G. Dimitrakopoulos, P. Mattheakis, L. Masse-Navette,
and D. Chinnery. Timing-driven and placement-aware multi-bit
register composition. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, to appear, 2018.

[124] I. Seitanidis, C. Nicopoulos, and G. Dimitrakopoulos. Powermax:
an automated methodology for generating peak-power traffic in
networks-on-chip. In Proceedings of the 2016 Tenth IEEE/ACM Inter-
national Symposium on Networks-on-Chip (NOCS), pages 1–8, Aug
2016.

171

Bibliography

[125] I. Seitanidis, C. Nicopoulos, and G. Dimitrakopoulos. Automatic
generation of peak-power traffic for networks-on-chip. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
to appear, 2018.

[126] I. Seitanidis, A. Psarras, K. Chrysanthou, C. Nicopoulos, and
G. Dimitrakopoulos. Elastistore: Flexible elastic buffering for
virtual-channel-based networks on chip. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 23(12):3015–3028, Dec. 2015.

[127] I. Seitanidis, A. Psarras, G. Dimitrakopoulos, and C. Nicopou-
los. Elastistore: An elastic buffer architecture for network-on-chip
routers. In Proceedings of the Conference on Design, Automation and
Test in Europe, Mar 2014.

[128] I Seitanidis, A Psarras, E Kalligeros, C Nicopoulos, and G Dim-
itrakopoulos. ElastiNoC: A self-testable distributed vc-based
network-on-chip architecture. In Proceedings of the 2014 Eighth
IEEE/ACM International Symposium on Networks-on-Chip (NOCS),
pages 135–142, Sept 2014.

[129] Li Shang, Li-Shiuan Peh, and Niraj K. Jha. Dynamic voltage
scaling with links for power optimization of interconnection net-
works. In Proceedings of the 9th International Symposium on High-
Performance Computer Architecture (HPCA), HPCA ’03, pages 91–
102, Feb 2003.

[130] Rupesh S. Shelar. An efficent clustering algorithm for low power
clock tree synthesis. In Proceedings of the 2007 International Sympo-
sium on Physical Design (ISPD), pages 181–188, 2007.

[131] Y. Shyu, J. Lin, C. Huang, C. Lin, Y. Lin, and S. Chang. Effec-
tive and efficient approach for power reduction by using multi-bit
flip-flops. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 21(4):624–635, April 2013.

[132] V. Soteriou and L. Peh. Exploring the design space of self-
regulating power-aware on/off interconnection networks. IEEE
Transactions on Parallel and Distributed Systems, 18(3):393–408,
March 2007.

172

Bibliography

[133] V. Soteriou and Li-Shiuan Peh. Dynamic power management
for power optimization of interconnection networks using on/off
links. In Proceedings of the 11th Symposium on High Performance In-
terconnects, 2003., pages 15–20, Aug 2003.

[134] A. Strano, C. Gomez, D. Ludovici, M. Favalli, M. E. Gomez, and
D. Bertozzi. Exploiting network-on-chip structural redundancy
for a cooperative and scalable built-in self-test architecture. In
Proceedings of the 2011 Design, Automation Test in Europe (DATE),
pages 661–666, March 2011.

[135] W. Su, J. S. Shen, and P. A. Hsiung. Network-on-Chip Router
Design with Buffer-Stealing. In ASP-Design Automation Conference,
2011.

[136] Y. Tamir and G. L. Frazier. High-performance multiqueue buffers
for VLSI communication switches . In Proc. of the 15th Annual
International Symposion on Computer Architecture (ISCA), pages 343–
354, 1988.

[137] B. Towles and W. Dally. Worst-case traffic for oblivious routing
functions. In ACM Symposium on Parallel Algorithms and Architec-
tures (SPAA), pages 1–8, 2002.

[138] A. T. Tran and B. M. Baas. RoShaQ: High-performance on-chip
router with shared queues. In IEEE International Conf. on Computer
Design, pages 232–238, Oct. 2011.

[139] Chang-Cheng Tsai, Yiyu Shi, Guojie Luo, and Iris Hui-Ru Jiang.
Ff-bond: Multi-bit flip-flop bonding at placement. In Proceedings
of the 2013 ACM International Symposium on Physical Design (ISPD),
pages 147–153, 2013.

[140] S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts,
Y. Hoskote, N. Borkar, and S. Borkar. An 80-Tile Sub-100-W Ter-
aFLOPS Processor in 65-nm CMOS. IEEE Journal of Solid-State Cir-
cuits, 43:6–20, Jan 2008.

173

Bibliography

[141] H. Wang and L.S. Pehand S. Malik. Power-driven design of
router microarchitectures in on-chip networks. In Proceedings of
the 36th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pages 105–116, 2003.

[142] S. Wang, Y. Liang, T. Kuo, and W. Mak. Power-driven flip-flop
merging and relocation. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 31(2):180–191, Feb 2012.

[143] Neil Weste and David Harris. CMOS VLSI Design a Circuits and
Systems Perspective. Addison Wesley (3rd Edition), 2010.

[144] Shmuel Wimer and Israel Koren. Design flow for flip-flop group-
ing in data-driven clock gating. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 22(4):771–778, April 2014.

[145] Gang Wu, Yue Xu, Dean Wu, Manoj Ragupathy, Yu-yen Mo, and
Chris Chu. Flip-flop clustering by weighted k-means algorithm. In
Proceedings of the 53rd Annual Design Automation Conference (DAC),
pages 82:1–82:6, 2016.

[146] Q. Wu, Q. Qiu, and M. Pedram. Estimation of peak power dissi-
pation in vlsi circuits using the limiting distributions of extreme
order statistics. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 20(8):942–956, Aug 2001.

[147] Kretchmer Y. Using multi-bit register inference to save area and
power: The good the bad and the ugly. EE Times Asia, 2001.

[148] Y. Yao and Z. Lu. Dvfs for nocs in cmps: A thread voting ap-
proach. In Proceedings of the 2016 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pages 309–320,
March 2016.

[149] Y. Yao and Z. Lu. Memory-access aware dvfs for network-on-chip
in cmps. In Proceedings of the 2016 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 1433–1436, March 2016.

[150] Dongyoun Yi and Taewhan Kim. Allocation of multi-bit flip-flops
in logic synthesis for power optimization. In Proceedings of the 35th

174

Bibliography

International Conference on Computer-Aided Design (ICCAD), pages
33:1–33:6, 2016.

[151] Y.J. Yoon, N. Concer, M. Petracca, and L. P. Carloni. Virtual chan-
nels and multiple physical networks: Two alternatives to improve
noc performance. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 32(12):1906–1919, Dec 2013.

[152] H. Zhang, V. George, and J. M. Rabaey. Low-swing on-chip signal-
ing techniques: Effectiveness and robustness. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 8(3):264–272, June 2000.

175

