
Timing Optimization Techniques for
the Scalable Physical Synthesis of

Digital Integrated Circuits

PhD Thesis

Dimitrios Mangiras

December 13, 2022

Advisor: Associate Prof. Giorgos Dimitrakopoulos

Department of Electrical and Computer Engineering

Democritus University of Thrace, Xanthi, Greece

Abstract

Physical synthesis is a fundamental part of the design flow of the modern VLSI since
it transforms automatically the designer’s RTL models to an integrated circuit ready for
fabrication. As the technology continues to scale and the number of transistors per chip
grows, the complexity of designing an integrated circuit increases steadily. The burden
of delivering efficient designs passes through the physical synthesis tools that should
satisfy two contradictory goals. First comes Quality-of-Results (QoR), i.e., to place
and route a design that satisfies the required timing, area and power constraints. Then,
comes efficiency that allows executing physical synthesis algorithms in the least amount
of time even for very large designs. This thesis tackles exactly those two contradicting
goals focusing on timing closure of complex digital designs.

Timing closure is a complex process that involves many iterative optimization steps
applied in various phases of the physical design flow. The scaling of the size of the
designs, the examination of multiple modes of operations and multiple design corners
including also On-Chip Variations (OCV), are major critical challenges that timing op-
timization should face effectively. To this end, we propose four timing optimization
techniques that tackle efficiently such challenges. The proposed approaches can be used
both for global timing optimization at the first steps of the physical synthesis flow or
close to the end where repairing timing violations requires incremental operations that
are nondisruptive and execute as fast as possible. In every case, the proposed meth-
ods are tuned for runtime scalability that allows their application to very large designs
without sacrificing QoR.

The first approach focuses on incremental timing-driven placement, with the goal
to fix the placement of timing-critical cells and improve overall timing. As opposed to
previous methods that independently move combinational gates, flip-flops, and/or LCBs
using loosely-connected algorithms, we propose, an Lagrangian Relaxation-based (LR)
timing-driven placement algorithm that handles the relocation of all types of cells in a
unified manner. Cells are allowed to move within an appropriately positioned search
window, the location of which is decided by force-like timing vectors covering both late
and early timing violations. The magnitude of these timing vectors is determined by
the value of the corresponding Lagrange Multipliers. The introduced placement opti-
mization is applied in conjunction with a newly proposed flip-flop clustering algorithm
that (re)assigns flip-flops to local clock buffers, to separate flip-flops with incompatible
timing profiles and to facilitate the subsequent timing-optimization steps.

The other two approaches focus on LR-based gate sizing and voltage threshold as-
signment techniques. Firstly, we present a way to transform a robust gate sizer, used as
global optimizer, into an incremental optimizer that can successfully improve the tim-
ing, power and area of the design really fast even when considering multiple corners.

I

The proposed methodology relies on different initialization of the LMs and therefore
the solution is orthogonal to the core of the optimizer. This means that it is easy to be
generalized and adopted by other similar timing optimizations to be transformed in an
incremental context.

Physical synthesis engines need to embrace all available parallelism to cope with
the increasing complexity of modern designs and still offer high quality of results. To
achieve this goal, the involved algorithms need to be expressed in a way that facilitates
fast execution time across a range of computing platforms. Motivated by this target, in
this thesis, we introduce a task-based parallel programming template that can be used
for speeding up timing and power optimization. This approach utilizes all available par-
allelism and enables significant speedup relative to custom multithreaded approaches.
Task-based parallelism is applied to all parts of the optimization engine covering also
parts that are traditionally executed serially for preserving maximum timing accuracy.
Additionally, this result was supported by two dynamic heuristics that restrict the num-
ber of examined gate sizes and simplify local timing updates. Both heuristics trade off
additional runtime reduction with marginal leakage power increases.

Timing optimization methods are completed by a novel methodology to reduce the
timing impact of the clock-induced OCV. To reduce the magnitude of the clock-induced
OCV, we incrementally relocate the flip-flops and the clock gaters in a bottom-up man-
ner to implicitly guide the clock tree synthesis engine to produce clock trees with in-
creased common clock tree paths. The relocation of the clock elements is performed
using a soft clustering approach that is orthogonal to the clock tree synthesis method
used. The clock elements are repeatedly relocated and incrementally re-clustered, thus
gradually forming better clusters and settling to more appropriate positions to increase
the common paths of the clock tree. This behavior is verified by applying the proposed
method in industrial designs, resulting in clock trees which are more resilient to process
variations, while exhibiting improved overall timing.

II

Acknowledgements

I would like to thank a couple of people, without them I would not have been able to
complete my dissertation.

First and foremost, I would like to express my deep gratitude and sincere appreciation
to my advisor, Giorgos Dimitrakopoulos, for the continuous support, his patience and his
invaluable guidance during my Ph.D, contributing to my academic self-growth with his
technical expertise. Under his supervision, I gained valuable knowledge and developed
important skills that significantly helped me to become not only a better researcher, but
also a better person. Furthermore, I am grateful to Giorgos for all the professional and
research opportunities he offered me.

I would also like to thank the members of my advisory and defense committee, Ioan-
nis Andreadis, Chrysostomos Nicopoulos, Spyridon Nikolaidis and Georgios Sirakoulis
for evaluating and reviewing my work, and for providing insightful comments that
helped to improve this thesis. I am very thankful to Chrysovalantis Kavousianos for
his useful technical feedback to refine this work. Also, my sincere thanks goes to Ioan-
nis Karafyllidis for providing me with his helpful advise.

Moreover, I need to thank my colleagues, Pavlos Mattheakis, Laurent Masse-Navete,
Pierre-Olivier Ribet, Nikita Nikitin, Javier de San Pedro Martin and Joseph Shinnerl for
the fruitful collaboration we had together in real industrial environment, as well as for
transferring to me crucial knowledge.

I am very grateful to the funding received through the Onassis Foundation and its
Program of Scholarships for Hellenes.

Many thanks go to my friends and labmates Dimitris Konstantinou, Apostolis Ste-
fanidis, Ioannis Seitanidis, Tasos Martidis, Zacharias Takakis, Dionisis Filippas and
Christos Gkantidis for the support, the many interesting discussions and exchanges of
ideas as well as the productive working environment when we shared a common of-
fice. Nonetheless, the time spent together at night outs helped me a lot to overcome the
difficulties of this journey.

Last but not least, I would like to thank my parents, Moschos and Vasiliki, as well
as, my sister, Dimitra, for their continuous support, encouragement and for feeling em-
pathy with my concerns. This journey would not have been possible without them, and
therefore, I dedicate this thesis to them.

III

Contents

Acknowledgements iii

1 Introduction 1
1.1 Physical Synthesis . 2
1.2 Towards timing closure . 3

1.2.1 Timing optimization during Logic synthesis 5
1.2.2 Timing-driven Placement . 6
1.2.3 Useful clock skew . 8
1.2.4 Interconnect delay optimization 11
1.2.5 Logic Restructuring . 15
1.2.6 Integrated optimizations . 19

1.3 Thesis Contribution . 20
1.4 Thesis Organization . 22

2 Lagrangian-Relaxation based Timing-driven Placement 25
2.1 Introduction . 25
2.2 Timing Compatibility Flip-Flop Clustering 27

2.2.1 Assign a Timing Profile to each Flip-Flop 29
2.2.2 Initialize Clusters and Prioritize Flip-Flops 29
2.2.3 Flip-Flop Clustering . 30
2.2.4 Update Cluster Centers and Timing Profiles 32
2.2.5 Clustering Behavior . 32

2.3 LR-Based Timing Optimization . 33
2.4 Overall Flow and LR-based Cell Relocation 39

2.4.1 Local Cost Function . 42
2.4.2 Lagrange Multiplier Update 43
2.4.3 Timing Recovery with Flip-Flop-to-LCB Re-assignment 44

2.5 Placement of the Search Window . 44
2.6 Experimental Results . 47

2.6.1 Comparison with winner of the ICCAD 2015 contest 48
2.6.2 Comparison with recent state-of-the-art 50

V

CONTENTS

2.6.3 Runtime comparisons . 54
2.7 Conclusions . 55

3 Incremental Lagrangian-Relaxation based Discrete Gate Sizing and Thresh-
old Voltage Assignment 57
3.1 Introduction . 57
3.2 Basics of LR-based gate sizing . 59
3.3 Incremental LR-based gate sizing . 63

3.3.1 What is the problem? . 64
3.3.2 What can we do about it? . 65

3.4 Experimental Results . 67
3.4.1 Quality-of-Results and Runtime comparisons 67
3.4.2 Exploring in depth the proposed LM initialization 71
3.4.3 Optimization with a restricted number of available gate sizes . . 74

3.5 Conclusions . 75

4 Task-based Parallel Programming for Gate Sizing 77
4.1 Introduction . 77
4.2 Related Work . 79
4.3 Generic Gate Sizing Template . 80
4.4 Initial sizing . 81
4.5 Main gate sizing optimization . 84

4.5.1 Forward Pass . 84
4.5.2 Backward pass . 90

4.6 Timing and Power Recovery . 93
4.7 Experimental Results . 96

4.7.1 The characteristics of the tasks graphs 96
4.7.2 Comparison with state-of-the-art 96
4.7.3 Highlighting the contribution of RTS and FLTU 102
4.7.4 The contribution of final timing and power recovery 105
4.7.5 Recovery with Composite Tasks 108

4.8 Conclusions . 109

5 Flip-flop Placement Targeting Clock-induced OCV 111
5.1 Introduction . 111
5.2 Motivation–Problem formulation . 112
5.3 Soft Clustering-based Placement . 116

5.3.1 Initialize cluster centers . 117
5.3.2 Compute membership function 118

VI

CONTENTS

5.3.3 Update cluster center . 120
5.3.4 Relocate Cells . 121
5.3.5 Algorithm complexity . 123

5.4 Experimental Results . 124
5.4.1 Timing comparisons . 124
5.4.2 Clock-induced OCV redistribution 126
5.4.3 Clock tree complexity . 127

5.5 Conclusions . 128

6 Conclusions 131
6.1 Summary . 131
6.2 Future Work . 132

Bibliography 135

VII

1 Introduction

Semiconductor and electronics industries have enjoyed tremendous growth and inno-
vations over the past 50 years thanks to Moore’s law that guided the rate of scaling of
transistor dimensions over time. Historically, we were able to harness all of the avail-
able transistors to deliver exponential increases in computational power by capitalizing
on technological improvements, architectural innovation as well as evolution of inte-
grated circuit (IC) design tools that allowed us to manage extremely complex designs
in a timely manner.

Digital IC design tools, broadly categorized as electronic design automation (EDA),
has always been the connection between technological improvements and the designer.
Simulation and verification tools support early architecture exploration and microarchi-
tecture design phases where the design is verified that it correctly performs the desired
functions and that it achieves the needed performance in terms of computational effi-
ciency. Physical synthesis tools, which is the focus of this thesis, transform the verified
microarchitecture-level designs to ready-to-be-fabricated chips. The logic synthesizer
maps the design into a gate-level netlist in the targeted technology of the chip. Place-
ment and routing engines complete the chip’s floorplan, place the cells of the design,
synthesize the clock tree and connect the cells together with appropriate wiring. In-
cremental timing and power optimizers bind together the gross placement and routing
steps thus simplifying timing closure (e.g., satisfying designer’s timing constraints) and
achieving significant power and area reductions.

As fabrication processes shrink in dimensions, the ICs become commensurately more
complex, and, as any design engineer appreciates, complexity increases design turn-
around time (TAT) and makes harder to improve results in power, performance and area
(PPA) above a threshold that would justify a new product in a new technology node. In
EDA, results are everything and to remain competitive, you can’t afford to make any
tradeoffs to either PPA or TAT, even if optimizing under multiple operating modes and
multiple PVT (process, voltage, temperature) corners. A scalable physical synthesis
engine should enable deeper solution-space exploration for increasing the quality-of-
results (QoR) in terms of PPA, and execute with reasonable runtime and memory uti-
lization on blocks of constantly increasing complexity. At 7nm technology nodes, 10
million cell blocks are becoming the norm, and ICs can easily integrate 100 plus such
blocks. Keeping pace with this escalation necessitates higher design efficiency and,

1

1 INTRODUCTION

Physical & Timing
Verification

Routing

Clock Tree Synthesis

Placement

Chip Planning

Design Simulation

& Logic Verification

Logic Synthesis

Physical Synthesis

Fabrication

Design Specification

Figure 1.1: The process of VLSI design and the main steps of the physical flow.

today, that can be most effectively addressed by runtime-efficient physical synthesis
optimization algorithms.

1.1 Physical Synthesis

Physical synthesis refers to the process of placing and routing the logic netlist of a de-
sign while concurrently optimizing for multiple objectives like timing, power, area and
routability constraints. To achieve this, physical synthesis consists of multiple iterative
techniques which are shown in the right part of Figure 1.1.

Chip Planning: The IC is partitioned into smaller individual subcircuits that can be
designed in parallel and independently. At the same time, the identified blocks should
be floorplanned selecting for each one its shape and size. Some of these blocks are
mapped to rectangular shapes with changeable dimensions while some others can have
fixed dimensions with possibly fixed locations. Also, in this step, the locations of the
I/O ports are determined, and the structure of the power delivery network is determined.

Placement should find the physical location of every logic cell of the design. To

2

1.2 TOWARDS TIMING CLOSURE

perform this complex task, placement works in two steps: global and detailed place-
ment. During global placement the movable cells of each block are distributed within
the block’s boundaries determined during chip planning. The locations of the cells are
roughly specified allowing overlaps between them. The detailed placement (aka le-
galization) step that follows specifies the final location of the cells so that each cell is
aligned to the designs rows and sites without overlaps. During this step, the cells are
moved to nearby locations in order to improve the circuit delay and utilization.

Clock Tree Synthesis: The purpose of clock tree synthesis is to automatically generate
a clock network of buffers and wires that connects all clocked storage elements of the
design with the source of the clock. Besides mere connectivity, clock tree synthesis
ensures that the clock signal exhibit fast transition times and gets delivered with the
appropriate latency. In addition, the clock tree is equipped with clock gating logic that
significantly reduces the design power by switching off parts of the circuit that are not
in use.

Routing: In global routing the routing resources are allocated in a more roughly way
to connect the design elements. Then, detail routing specifies for every wire connection
to which specific metal layers is assigned and which routing tracks are used. Routing
besides identifying the appropriate wiring paths for all nets of the design, should ensure
that timing is not negatively affected by the RC parasitics of wires, and also that there
aren’t any wire-congested regions.

Physical and Timing Verification: Before IC fabrication, it is important to ensure its
proper timing with the given clock target. In other words, all the timing constraints
including the setup and hold analysis have to be met. For this reason, timing is also part
of the objective in each step of the physical design flow. However, if timing is not closed
at the end, other incremental timing optimization methods are invoked to eliminate the
timing violations. Timing verification is performed by sign-off static timing analyzers
that check the timing behavior of all the timing paths of the the design again multiple
timing constraints.

1.2 Towards timing closure

Timing closure is a complex process that involves multiple iterative optimization steps
that are applied multiple times during physical synthesis or are integrated inside global
physical synthesis algorithms such as placement and routing. Given timing constraints
and the characteristics of the technology as reflected to the delay of the gates, the wires
and the sequential elements, the goal of timing closure is to synthesize automatically the
physical structure of the design having all timing constraints satisfied. Removing any
possible timing violation is a hard requirement that enables design to operate correctly

3

1 INTRODUCTION

after fabrication and cannot be skipped without performance degradation.
The challenges that timing closure faces nowadays can be summarizes as follows:

• Design’s size: In the designs with millions or even billions of cells, the optimiza-
tion algorithms need to scale well in order to complete in reasonable time. The
speedup of the optimizations becomes more essential because the turnaround time
is specified to only 12 hours per million of cells for the whole physical synthesis
flow [120].

• Multiple modes and corners: The chip designs operate under many different op-
erating conditions with different electrical properties and thus there are multiple
active modes and corners of which the timing constraints have to be satisfied si-
multaneously [94, 135]. However, trying to remove a timing violation from one
timing scenario could easily create a new violation in another making the physical
process even more challenging.

• On-Chip Variations: The On-Chip Variations (OCV) effect refers to the intrinsic
variability involved in semiconductor manufacturing processes and the fluctuation
of operating conditions, such as voltage and temperature, and how they impact a
circuit’s timing [34]. The OCV increases the delay of the cells in the launch path
and concurrently decreases the delay of the cells in the capture path tightening the
timing constraints.

• Low power designs: Reducing power consumption has become a key design chal-
lenge at advanced technology nodes. For many IC designs, optimizing for power
is as important as timing, due to the need to extend battery lifetime, reduce pack-
aging and cooling costs, and permit higher device performance.

• Higher interconnect RC: Even though, transistors successfully followed the tech-
nology scaling, the wires did not scale accordingly. This resulted the wires to
have increased resistance and the interconnection delay not only to have by far
the lion’s share of total delay, but also its variation across the stack has reached
over one order of magnitude between the lowest and the highest metal layers with
dramatically increase of the vias resistance.

To meet all the timing constraints, there is a wide variety of optimization techniques
that are applied on every step of design flow. Even though the first stages of design
flow, such as logic synthesis and placement, are not targeting explicitly timing closure,
they include algorithms to minimize the path delays and remove a big number of the
initial violations. As the design passes through the next steps of the design flow, timing
becomes more accurate that enables finer grained optimizations. For instance, during

4

1.2 TOWARDS TIMING CLOSURE

clock tree construction the useful clock skew applies specific target clock delays on each
register that will improve the timing in overall, while routing inserts extra cells to cut
long wires into short wire segments and finally reduce the interconnection delay. There
are also many timing optimizations techniques, such as gate sizing and buffering, that
are applied incrementally between (or even inside) the main steps of the design flow.
The recent years integrated approaches have also emerged that interleave in a tightly-
coupled manner various timing optimization methods that were traditionally applied
separately with a predetermined serial order.

1.2.1 Timing optimization during Logic synthesis

Logic synthesis usually involves two separate optimizations phases. Firstly, technology-
independent optimizations are applied with the goal to minimize the area and the de-
lay of the design assuming that the netlist consists of generic gates. Later, during the
technology-dependent optimizations the area and the delay of the standard cells in the li-
brary of the specific technology are used in order to meet the timing requirements. Both
stages try to minimize the propagation delay so that a netlist with less timing violations
is given to the rest part of the physical synthesis flow.

Reduction of the logic depth is a well-known technique to improve timing. The in-
tuition of this approach is that reducing the logic depth less gates are involved in the
critical path and therefore the propagation delay of the path is improved. Initially, Singh
et al. [147] proposed a methodology that re-synthesizes a subset of the critical paths to
reduce the delay without significant area increase. The resynthesis first decides to col-
lapse some logic in the critical paths and then decomposes the respective nodes decreas-
ing the longest path delay. The identification of the subsets is done using a weighted
min-cut algorithm. Fishburn [41] proposed a greedy heuristic that decreases the initial
logic depth N to logN. The heuristic iteratively selects a subcircuit of the critical path,
tries different transformations and finally applies the solution that improves the timing.
Another successful technique to reduce the logic depth introduced by Cortadella [28]
that interleaves the simplification of boolean functions using different functions with
simpler components and tree-height decrease of boolean expressions. As the need to
achieve higher performance increased even the technology mapping step started to con-
sider the delay. One of the first attempts was to change the originally used tree-based
min-area mapping algorithm so that the initial netlist has the minimum number of logic
levels and the objective targets the arrival time minimization instead of the area [137].
Later proposed attempts are trying to reduce the path delays lower than a threshold, that
is usually the clock cycle, to guarantee correct functionality [19].

Retiming has been also proved to be an effective timing optimization during logic
synthesis. More specifically, changing the position of the sequential elements without

5

1 INTRODUCTION

C

D

B

A D

C
B

slower slower

slower
faster

A

longer
wire

longer
wire

faster faster

DCA

B

faster

slower longer
wire

shorter
wire

shorter
wire

(a): Initial circuit (b): Gate C approaches B (c): Gate C closer to A and D

Figure 1.2: Placement changes the wire length around the moved cell and consequently
alters the wire delay. In (b) the gate C is placed closer to gate B resulting to
shorten the wire that connects B and C and increase the rest wires. In (c) the
gate C is moved closer to both A and D, accelerating them and increasing
the delay of gate B.

affecting the design behavior can alter the propagation delay. There are two types of re-
timing; in forward retiming a flip-flop is moved forward and from fanin element of a gate
it becomes fanout of this gate, while the opposite happens in backward retiming [145].
However, the challenging part is to identify which flip-flops need to be retimed and in
which direction in order to achieve the highest performance gains. Combined with the
retiming, the latest industrial tools also use clock scheduling algorithms that change the
clock latencies in order to achieve optimal slack balance of the sequential elements [1].

1.2.2 Timing-driven Placement

Timing-driven placement is a significant step to the performance of the design because
it determines the physical location of the cells and thus directly affects the length of the
wires as well as the wire delay. A placement without considering timing, may cause
long interconnections with increased resistance and capacitance that would slow down
the propagation of the signal. As shown in Figure 1.2, the different location of gate C
can favor different gates that are directly connected to it. For instance, in Figure 1.2(b),
gate C is placed closer to gate B shortening their in between wire. This results to faster
propagation delay of both gate B and their interconnect delay but to slower delay of all
the other interconnections and gates. If the gate C is moved closer to both A and D
(Figure 1.2(c)), the timing of both A and D is improved at the expense of the timing
of gate B. It is clear that timing-driven placement is crucial to obtain a solution with
significant reduced timing violations. To achieve this all the timing violations have to
be considered in order to properly relocate the gates. However, the global placement
usually does not consider timing because in the early stages of the physical flow the

6

1.2 TOWARDS TIMING CLOSURE

locations are not available yet and therefore the estimation of the wire and gate delay
becomes very inaccurate. Instead, the timing is preferred to be optimized during detailed
placement where the locations are known and the timing estimations are more accurate.

Timing-driven placement approaches can be divided into three different categories;
net based, path based and hybrids. The net based methods usually assign net weights to
each net that reflect the timing criticality and they try to minimize a weighted wirelength
cost function iteratively. The idea is the weights to be proportional to the timing critical-
ity of the nets. In other words, nets with negative slack get weights with higher values
than the non-critical nets, so that the critical nets contribute more to the cost function
and therefore guide the placer to decrease the length of these nets.

The assigned weights can either remain static during the optimization iterations or
they can change dynamically i.e. in each iteration a timing analysis is performed and
the weights are updated to reflect the new criticality of the design. For instance, in [84]
the authors assign static nets weights according to the number of paths. To do this, they
also propose a new algorithm that counts accurately the number of paths. The later work
of [132], introduced a new net weighting method that targets also to minimize the total
negative slack instead of only worst negative slack.

Although static weights can improve timing, the dynamic weights are more promising
because they are updated in each iteration and thus they never become stale as it can
happen with the static net weights. A new force directed placer proposed in [35] that
was targeting timing closure. In order to avoid oscillations, the net weights are updated
taking into account the values of the previous iterations. To increase the contribution
of the timing critical nets in the cost function, the authors of [80] used an exponential
function to increase the weights of the nets with negative slack. For more accurate wire
delay computation, the authors of [133] used the Elmore delay model accompanied by
the star model for the wirelength estimation. Without limitation, Lagrangian Relaxation,
that has been widely used in gate sizing, is also applied in placement to minimize the
total number of violating endpoints [53, 96, 165]. In this case, Lagrange Multipliers are
net weights and they are used to solve the Lagrangian Dual Problem of the Lagrangian
Relaxation Subproblem.

Some alternative approaches of net based techniques assign wire length or delay con-
straints to nets instead of weights [48,49,154]. For example, wire length constraints can
be assigned into nets using a linear programming which are later met by analytic placer
engines [55] or using a force directed placer [125]. Typically, for the placer engines
is more complicated to meet the net or delay constraints because it is really difficult to
know the exact effect of a net change to the delay. On top of this, the assigned constraints
can further limit the solution space.

In the path based techniques, the minimization of the total or worst negative slack is
typically achieved using linear programming. In the formulation, all or part of the paths

7

1 INTRODUCTION

with negative slack are converted to form the constraints of the problem. For example,
Srinivasan et al. [149] used the Lagrangian Relaxation to relax the linear programming
problem and smooth the critical paths. The authors of [163] used simulated annealing to
decrease the path delay of the paths with negative slack. A different algorithm, enumer-
ates the possible candidate locations for each gate with the corresponding changes in the
delay in order to solve timing violations and uses the branch-and-bound method to avoid
exhaustive search across all possible combinations [111]. The authors of [25] determine
the locations of the cells solving a linear programming problem in which the changes
in timing are computed using a differential timing model. Later, pin-based constraints
were added in the linear programming of the timing driven placement engine [131] to
significantly reduce the timing violations and the wirelength at the same time. The main
drawback of the path based approaches is the prohibitive runtime as the design size in-
creases because the number of paths grow exponentially and the same does the number
of variables in the linear programming.

Regarding the hybrid timing-driven methods, they combine features of both net and
path based techniques. As an example, the authors of [103] proposed a linear program-
ming that takes into account the critical gates as well as the non-critical gates near to the
critical. Even though the formulation uses net weights it also takes advantage of the path
based delay sensitivity. In [46] a quadratic placement algorithm from global placement
is used to operate solely on the critical paths after assigning them appropriate weights
in order to improve their timing. The ITOP method [158] uses an accurate timing ana-
lyzer instead of simplified timing models to perform critical path optimization and slack
histogram compression and it finally achieves significant timing improvements without
degrading the routability of the design.

There are some other alternative methods that have been also studied and they do
not clearly belong to any of the previous categories. OWARU [77] improves the timing
of the critical paths by smoothing their physical curve using the Bézier curves. While
most of the techniques target the setup optimization, there are approaches which im-
prove the hold slacks too. [44] proposed a set of algorithms to decrease hold violation
such as moving apart the registers without combinational logic in between them or ex-
changing the physical locations of the appropriate registers. Similarly, [67] proposed
re-assignment of the flip-flops to new local clock buffers as well as flip-flop and local
clock buffer relocation that in total can improve significantly the hold slacks at no cost
of setup slacks.

1.2.3 Useful clock skew

Despite the data paths, the clock tree paths have also a significant impact on the timing
violations. The clock tree connects all the sequential elements of the design in order

8

1.2 TOWARDS TIMING CLOSURE

clock

arrival

D Q
-20 -30

clock

arrival +10

D Q
-10 -40

D Q
-30 -20

clock

arrival -10

(a): Initial circuit (b): Clock arrives later (c): Clock arrives earlier

Figure 1.3: Changing the clock arrival affects the timing at both side of the flip-flops.
(b): A later clock arrival improves the timing at the D side and degrades the
Q side. (c): When the clock signal arrives earlier, the slack of the starting
paths is improved and the ending paths become worse.

to distribute them the clock signal. Even though there is the assumption that the clock
signal arrives at all the sequential elements at the same time, this is not possible consid-
ering the different propagation delays of the clock tree branches. However, determining
appropriately different clock arrivals at each clock element can improve the slack of
the data paths. For instance, delaying the clock arrival of a flip-flop, as shown in Fig-
ure 1.3(b), improves the paths of the D side because the setup required arrival time
is increased, and degrades the paths that start from the Q side. In contrast, an earlier
clock arrival favors the timing of the Q side at the expense of the timing at the D side
(Figure 1.3(c)). Obviously, altering the clock arrival can improve the timing violations
without even touching the combinational paths. But the main target of this optimization
is to determine which registers should receive a later and which an earlier clock signal,
as well as by how much in order the overall timing to be improved. This approach is
known as useful clock skew optimization.

Firstly, Fishburn [42] proposed a linear program that determines the clock tree de-
lays of the flip-flops in order to achieve higher performance under both setup and hold
timing constraints. The clock period minimization problem extended to include also un-
certainty factors and a different solution proposed using a graph-based approach [33].
Later, a linear program was introduced that targets the potential slack budgeting by
changing the clock skew [159]. The UST/DME [153] engine applies skews to the clock
tree elements and at the same time determines the locations of the clock tree routes using
deferred-merge embedding algorithm with minimal impact on the wirelength. In addi-
tion, to achieve higher global timing improvements in critical and non-critical paths,
the useful skew can be formulated as a maximum mean weight cycle (MMWC) [2]
problem. Wang et al. [160] proposed a clock skew scheduler with almost linear run-
time, while Wei et al. [162] achieved significant speedup of the MMWC using a fast

9

1 INTRODUCTION

negative cycle detection method. The predictive useful skew methodology NOLO [18],
that chooses the skews before placement phase and applies them with only one pass –
without iteration, achieves better total negative slack. Considering multiple modes and
multiple corners, Lung et al. [102] used a linear programming model to optimize skew,
while in [136], positive and negative offsets are applied on each clock pin of an already
constructed clock tree in order to improve the timing in multiple modes and corners.

Moreover, as the technology scales further, the process, voltage and temperature
(PVT) variations introduce additional uncertainties which highly impact the timing. In
other words, some cells become faster while some other cells slower than expecting
making even more challenging to meet the timing constraints of the paths. For this
reason, the authors of [37] presented the idea of constructing useful skew trees with
large safe margins so that the skew constraints can be met even when there are varia-
tions which degrade the timing, while later in [39] they proposed the usage of a latency
constraint graph based on skew constraints and latencies to finally build a robust latency-
bounded clock tree that can increase the design’s performance. [127] and [17] reduce
the impact of variations by minimizing the clock divergence, while the authors of [156]
reconstruct the clock tree using a predicted leaf buffer slack graph to reconnect buffers
and achieve higher improvements of timing metrics like total negative slack.

The useful skew optimizations are vital to achieve timing closure. However, the fact
that the majority of the skews are computed theoretically even before the clock tree by
using a linear programming is their main drawback. The reason is that the solver de-
termines the values of the variables that minimize the selected function without know-
ing what is the cost to implement the corresponding delays in practice. For example,
some solutions may be infeasible just because they require a significant number of clock
buffers in order to implement them which degrade the clock tree latency, the clock power
consumption, etc. In other words, it is not easy to predict what are the consequences of
the theoretically computed skews in the clock tree features such as the number of clock
buffers, the power and the area.

In addition, traditional skew optimization approaches assume the combinational paths
have constant delays and thus try to improve the timing changing only the clock delays.
At the same time, every data path optimizer assumes fixed clock tree delays and focuses
only on how to improve the slack of the gates in the data path. But there is no argument
that every attempt to integrate different physical optimizations has resulted to much bet-
ter timing. For instance, [1, 3] integrate the useful clock skew with the RTL synthesis
stage for higher performance, while in [73] the placement approach uses additionally
useful skew to improve the increased delay of the timing critical paths achieving signif-
icant improvements. Since both data path and useful skew approaches have the same
timing target, much effort has to be made on how these methods can be integrated which
mostly are applied as different optimization phases until now.

10

1.2 TOWARDS TIMING CLOSURE

650

0

Technology node (nm)

G
a
te

 d
e
la

y
 (

p
s
)

Gate delay

Interconnect delay

5

10

15

20

25

30

35

40

500 350 250 180 130 100

Figure 1.4: Gate delay and interconnect delay as the technology scales. Initially, the
delay of the gates was dominating the wire delay in the computation of the
path delay but in newer technologies the interconnect delay has become the
bottleneck of the timing.

1.2.4 Interconnect delay optimization

With the continuous scaling of the technology, interconnect delay started to contribute
more and more to the path delay. Figure 1.4 shows the interconnect and gate delay
for different technologies. Even though gates could follow the technology scaling, in-
terconnect was scaling slower leading to wires with high resistance. As a result, the
interconnect delay became the bottleneck of the path delays in the newer technologies
and new timing optimizations had to be investigated.

Since the need to take into account the interconnection delay arose, different mod-
els have been used in order to estimate the wire-length of the net and then to compute
the wire delay. Initially, the Elmore delay model was used that computes with preci-
sion the wire delay of a net with only one sink. However, for nets with multiple sinks,
the wire delay calculation wasn’t accurate enough and thus the moment matching [122]
was proposed. Besides these, other models were also tried as illustrated in Figure 1.5.
For example, in half perimeter wirelength (Figure 1.5(a)) a rough estimation of the wire-
length is done computing the half perimeter of the minimum bounding box that encloses
all the pins of the net. But even this approach, becomes inaccurate for the nets with more

11

1 INTRODUCTION

(a): HPWL (b): Clique (c): Star (d): Steiner tree

Figure 1.5: Wirelength estimation models for nets with multiple pins.

than 4 pins. In clique model (Figure 1.5(b)) each pin is directly connected to each other
pin using only horizontal and vertical wires, while in the star model (Figure 1.5(c)) there
are wires connecting the source pin to each sink independently. The drawback with the
clique is that overestimates the wirelength. The most accurate model is the steiner tree
depicted in Figure 1.5(d). For the construction, additional points (Steiner points) are
inserted but the problem of finding the optimal tree is NP-hard. Thanks to FLUTE, ac-
curate and optimal steiner trees can be constructed very fast using precomputed lookup
tables [26].

Routing

Typically, a net with increased length affects the designs performance in two ways. First
of all, more time is needed for the signal to propagate from the driver cell to the sinks,
and secondly the increased capacitance of the interconnection slows down the driver
whose delay is a function of the input transition and the output load capacitance. Usu-
ally, the routing methods determine the wire routes so that congested areas are avoided
in the design. However, as the interconnection delay started to be substantial, even
routing approaches have become timing-driven.

Wire topology optimization

Some of the timing-driven routers target to decrease the maximum wire delay from
the driver to a specific sink. Boese et al. [14] introduced an algorithm that alters the
traditional routing in order to build routing trees for multi-sink nets with reduced Elmore
wire delay towards specific timing critical sinks. In a similar way, in [83] a heuristic
approach is proposed to build a steiner tree that minimizes the delay of the sink with
the most negative slack. To achieve this, first a minimum-cost steiner tree is constructed
that connects all the sinks except of the most critical. For the unconnected sink a set of

12

1.2 TOWARDS TIMING CLOSURE

65 45 32

Technology node (nm)

R
e
la

ti
v
e
 d

e
la

y

1

10

100

250 180 130 90

Global w/o repeaters

Global with repeaters

Figure 1.6: As the technology scales, becomes more and more meaningful to add re-
peaters on the nets which can significantly reduce the interconnection delay.

different heuristic methods is tried and finally the most critical sink is connected to the
steiner tree using the solution that minimizes its interconnection delay.

Some other routers, try to route the design but avoid creating long wires for the crit-
ical nets that could degrade further the timing. For example, a timing-driven algorithm
uses bounded-radius minimum routing tree formulation and achieves reduction of the
total net length and at the same time minimizes the interconnection length of the longest
wire that connects source and sink [27]. Also, the [6] work enhanced the algorithm pre-
sented in [5] introducing different costs for critical and non-critical nets so that the net
construction determine shorter wire routes for the nets with negative slack. Other newer
approaches, propose algorithms that reduce the usage of the vias [168] which have large
process variation and thus can compromise the timing. In the modern technologies there
are available for routing up to twelve metal layers, each of them with different charac-
teristics [8]. Typically, the upper metal layers are more suitable to be used for timing
critical wires because they are thicker with significant lower resistance. Hu et al. [65]
proposed a layer assignment methodology that improves the timing of the design and
achieves significant speedups compared to the older approaches. Also, Lagrangian Re-
laxation has been also used to minimize the designs total negative slack by re-assigning
the net segments to the most suitable metal layers while satisfying the routing capacity
constraints [95].

13

1 INTRODUCTION

B
A

4ps

B
A

repeater

C D

2.5ps

(a): Initial circuit (b): Repeaters C and D inserted

Figure 1.7: Repeaters are inserted to cut long wires to shorter equal segments reducing
the interconnection delay. In (a) the initial long wire resulted to 4ps wire
delay, while in (b) after adding two repeaters the propagation delay from
gate A to B reduced to 2.5ps even though two extra cell delays are including
in the path delay.

Adding repeaters

Another effective technique to alleviate the propagation delay of long wires is to parti-
tion them using repeaters. Figure 1.6 depicts the relative delay of the wires over different
technologies. In the early technologies, even without adding repeaters the interconnec-
tion delay remains low. However, after 130nm it becomes clear that inserting repeaters
is essential for timing closure because in this way the propagation delay is reduced sig-
nificantly.

The repeaters are added to cut the long wire to a number of equal shorter wire
segments so that the total propagation is lower than previously. As illustrated in Fig-
ure 1.7(b) after adding the repeaters C and D in the long wire that connects the gates A
and B, the propagation delay has decreased by 1.5ps compared to its initial delay even
though the new delay involves the cell delays of the two repeaters. However, the number
of repeaters is crucial in order to decrease the wire delay.

To do that, there is the assumption that the initial long wire will be cut to equal wire
segments and the repeaters will have the same size. This means that every wire segment
has the same propagation delay and the new total propagation delay is the summation
of the propagation delays of each of the segments. Therefore, by just differentiating the
formula of the new delay by the length of the wire segment, the optimal length of each
segment is computed that minimizes the new propagation delay.

However, inserting repeaters has two main drawbacks. First of all, since the repeaters
are usually inverters, always an even number of repeaters needs to be inserted in order
to not change the polarity of the propagated signal. This means that in cases where the
optimal number of repeaters is odd, a suboptimal number of repeaters is finally inserted.
Also, each repeater contributes to the total power and area of the design. In other words,
even though they reduce the propagation delay, they should be used frugally to keep the
area and the power under control.

14

1.2 TOWARDS TIMING CLOSURE

C

A

B

D

faster

slower

slower

A

B

C D

faster

faster

slower

C

A

B

D

(a): Initial circuit (b): Gate C is upsized (c): Gate C is downsized

Figure 1.8: Gate sizing changes the timing characteristics of the sized gate and conse-
quently changes the delay of the gates connected to it. In (b) the gate C is
upsized resulting to accelerate itself while slowing down its fanin compared
to their initial delays in (a). In (c) the gate C is downsized resulting to slower
gate C but faster fanin gates.

1.2.5 Logic Restructuring

Gate sizing

Gate sizing refers to the process of optimizing the sizes of the transistor in order to
satisfy timing constraints and reduce gate’s area and leakage power. In the past, the
sizes of the gates’ transistor could have been selected arbitrarily. Nowadays, individual
transistors are not separately optimized since the design is mapped to a pre-specified
standard-cell library during logic synthesis. Cell libraries contain multiple equivalent
options for each gate and flip-flop that has the same logic functionality but offers differ-
ent area, leakage power, and timing characteristics.

Upsizing a logic gate decreases its delay since the wider transistor can (dis)charge
faster its output capacitance. However, at the same time, gate upsizing increases its
input capacitance that acts as output capacitance for its fanin gates, as highlighted in
Figure 1.8(b). The opposite happens when downsizing a gate. For instance, in the
example shown in Figure 1.8(c) down sizing gate C slows down itself and accelerates
its fanin (gates A and B) due to the lower input pin capacitances.

Gate sizing needs to select which cell fits best in each occasion by trading off area
(and power) with delay. However, the decision to upsize or downsize a gate can be very
challenging when considering all the critical paths that pass through a gate. Therefore,
the target is to properly determine the most suitable size for each logic gate that improves
the timing in overall.

Gate sizing does not change only the size of the corresponding cells but it also se-
lects the appropriate threshold voltage for each cell too. Choosing a transistor with
lower threshold voltage decreases the needed time to charge the output load reducing
the propagation delay. However, the lower threshold voltage increases the leakage cur-

15

1 INTRODUCTION

rent that flows in the transistors and consequently increases its leakage power. Deep sub
micron libraries usually provide three types of threshold voltage for their transistors,
i.e low, standard and high threshold voltage. Thus, gate sizing has to also select the
appropriate threshold voltage transistors that improve the designs performance without
significant power increase.

During the eighties and nineties gate sizing was modeled as convex problem assum-
ing that each gate could take any size in a range of transistor sizes. Posynomial func-
tions were used for estimating the delay of each gate [20, 43]. According to [138],
similar problems were solved with geometric programming. The drawback was the
high memory and the runtime, so its application was limited to only small designs [15].
As technologies continued to scale, delay modeling with posynomial functions became
highly inaccurate. Also, continuous transistor sizing was abandoned and each design
was mapped to a library of discretely-sized cells. To adjust to this changing environ-
ment, gate sizing algorithms “rounded” the continuous solution to the closest discrete
cell. [64].

From this point forward, all gate sizing algorithms worked directly on the discrete
cells [29] Assuming only discrete sizes, gate sizing becomes an NP-hard problem [115].
Pseudo-polynomial dynamic programming has been used to solve such problem but
their application was limited for netlists with tree structure [16]. In addition, gate siz-
ing has been solved using linear programming (LP). Slack can be distributed to gates
using LP to maximize the power reduction [113]. This work was further enhanced by
proposing an LP that takes into consideration the wire loads and the impact of slew and
input capacitance changes on delay and thus obtains better QoR [23]. However, these
approaches aren’t suitable for large designs due to the prohibitive runtime as the number
of variables increases.

Alternative methods, choose the new size using a sensitivity function. In these cases,
the gates are resized to new sizes that maximize the selected gain under constraints.
The optimization usually involves two phases in which the power and the timing are im-
proved separately. For instance, Hu et al. [63] proposed a sensitivity-guided metaheuris-
tic method that optimizes power and timing and he revised the sensitivity functions later
in [78] to include the impact of slew on delay increasing the accuracy of the delay com-
putation. Sensitivity guided methods have wide application range and they have been
applied even on design under multiple corners. More specifically, multi-corner multi-
mode sensitivity functions were presented in [40] to effectively resize the gates in order
to meet the timing constraints and save power. The main drawback with the sensitivity
heuristics is that they may converge to local optimal point and thus the best solution can
not be guaranteed.

From all the available gate sizing approaches, those that are based on Lagrangian
Relaxation (LR) obtain final solutions with higher timing improvements. In these ap-

16

1.2 TOWARDS TIMING CLOSURE

proaches usually the cost function is the total power minimization while respecting the
timing constraints. Then, the timing constraints, which are hard to be respected, are
inserted in the initial cost function multiplied by non-negative weights forming the re-
laxed version of the initial cost function. These weights, which are called Lagrange
Multipliers (LMs), act as penalty factors and thus they have high values only if the
corresponding timing constraints get violated. The relaxed cost function is minimized
iteratively and each iteration involves two separate steps; the solution of the Lagrangian
Dual Problem (LDP) and the solution of the Lagrangian Relaxation Subproblem (LRS).
In the LDP phase, the values of the LMs are updated in order to reflect the criticality of
the design and this is usually done using a subgradient method [20]. The target of LRS
is to determine the sizes for each gate that minimize the relaxed cost function assuming
constant values for the LMs.

There is a wide variety of gate sizing techniques using LR. For example, LR has been
used to size gates and wires simultaneously [20]. Ozdal et al. [118] uses a graph model
in which each available equivalent discrete gate size is represented by a node and the
edge weights capture the delay costs. The most efficient sizes of the LR-based gate
sizing problem are chosen by dynamic programming. Contrary to previous LR-based
works, the selection of gate sizes that minimize the local LR cost can obtain better
timing results with further reduced leakage power, is introduced in [47]. But due to
the single threaded implementation, the work reported high run times. Later, Sharma
et al. [143] proposed new equations for the update of the Lagrange Multipliers (LMs)
and how the LR-based gate sizing can be implemented with multiple threads to obtain
faster results. Since most of the designs operate under different conditions, the LR cost
can be extended to effectively perform power and timing optimization under multiple
scenarios [134]. For better final results, clock-related formulations were also included
in the LR method leading to resize gates in both data and clock paths [146]. The LR
can be also extended to adjust clock arrival times resulting to higher power savings as
evaluated in [141].

Buffering

As the technology continued to scale further more, the interconnection delay had more
and more high impact on the timing leading the engineers to find new and more effective
techniques to handle it. Even though placement and routing could improve the wire
delay, for some specific nets these techniques were insufficient. For example, nets with
high degree of fanouts needed a special treatment such as adding buffers.

Typically, a buffer consists of two serially-connected inverters. Usually, the buffers
are inserted to increase the drive strength or to accelerate the drivers by shielding them
from a portion of the load they drive mostly in the nets with multiple fanouts or fanouts

17

1 INTRODUCTION

D

E

B

C
A

fanout=4

slow fast

A

B

D

E

C

F

fanout=2

buffer

(a): Initial circuit (b): Buffer F inserted to shield gate A

Figure 1.9: (a): Gate A drives 4 gates which slow down its propagation delay. In (b) a
buffer is inserted that drives the 3 of the original fanouts. The buffer shields
the gate A accelerating its delay.

with increased input pin capacitances. For instance, in Figure 1.9(a), gate A has in-
creased propagation delay due to the high load it drives. However, inserting buffer F to
drive the gates C–E (Figure 1.9(b)), gate’s A load capacitance is reduced and therefore
its propagation delay is decreased.

The most known buffering algorithm, proposed by van Ginneken [157], improves
the design performance by inserting buffers in a known steiner tree topology using the
Elmore delay model. Later, the signal slew included in the buffer delay model achieving
higher improvements [88]. Buffering is typically an NP-complete problem with high
runtime ans complexity due to the multiple buffer sizes, number of sinks and the number
of candidate positions for buffers in the nets. Using a new pruning rule and the predictive
merging technique, Wang et al. [161] succeeded to accelerate the buffering, while in [66]
a fully polynomial time approximation proposed approaching the optimal solution with
4× speedup. Lagrange Relaxation has not been used only for gate sizing or placement
but also for adding buffers trying to minimize the power consumption and cell density
under timing constraints [61, 91].

Buffers are also used to improve the hold slacks. In this case, the buffers add extra
delay in the very fast paths. Linear programming formulation has been used to find so-
lutions for the early slacks with the minimum number of inserted buffers [68]. In [167],
the proposed LP formulation models the setup and hold constraints and uses graph re-
duction to decrease the number of variables and thus the time complexity. The timing
improvement can become more challenging when there are more than one corners and
modes. For example, to remove the hold violations across multiple corners an integer
LP formulated proposed in [57], while in [155] a technique to solve the early violations
across multiple power modes introduced.

18

1.2 TOWARDS TIMING CLOSURE

A

B

D

C
A

B

D
E

buffer

C
faster

downsized

faster

A

D

C
relocated

and

downsized

B

downsized

(a): Initial circuit (b): Buffer insertion (c): Placement and gate
and gate sizing sizing

Figure 1.10: (a) An example circuit in which the timing of gate A needs to be improved
and (b), (c) different changes that can be applied at once from the integrated
optimizations to choose the best one.

The main disadvantage of adding buffers in the design to either improve setup or
hold timing is that each buffer contributes to the total power consumption and area
of the design. Especially, in the large designs where the number of buffers increases
significantly e.g. up to 44% of the total cell instances, the impact on both area and
power can’t be ignored.

1.2.6 Integrated optimizations

Typically, each timing optimization method is sufficient in improving the timing of the
design independently. But the order of applying these techniques is also crucial for the
final Quality-of-Results. For instance, when buffering is used before any other opti-
mization and the design suffers from multiple violations, a significant number of buffers
are added degrading the power consumption and the area of the final design. However,
when buffering is applied as the last mile technique to solve any timing violations the
other timing-driven methods didn’t succeed to fix, less buffers are needed. As the ex-
act optimal order of the optimizations is not known and due to the increased demand
for extremely effective methods that maximize timing improvements, there are some
approaches which have integrated different optimization algorithms into one to achieve
even higher performance results.

Figure 1.10(a) depicts an example of what changes an integrated optimizer can try to
improve the delay of gate A. An integrated optimizer, applies different netlist modifica-
tions simultaneously to finally select the best one. Therefore, as shown in Figure 1.10(b),
the first option is to downsize gate B and insert a buffer that shields the load seen by A
improving in this way its gate delay. Another option is to downsize all gates B–D and
also relocate the gates C and D closer to their driver A in order to further reduce the load
driven by gate A.

19

1 INTRODUCTION

Similar optimizers have been proposed in the past. OWARU [77] is an efficient
timing-driven placement method that integrates also gate sizing as well as layer as-
signment and improves both the worst negative slack and the total negative slack of the
design in higher degree compared to the timing results of applying each method sep-
arately. RUMBLE [121] is another engine that achieves remarkable savings in timing
by exploring solutions that combine the relocation of the pipeline latches with buffer
insertion resulting to substantial decrease of the worst path delay. ITOP [158] performs
an iterative timing optimization considering multiple optimizations. In each iteration
the gates of the critical paths are relocated to smooth the path, the slow gates are resized
to faster alternatives and some buffers are inserted. All the three transformations com-
bined together achieve a globally better timing solution. In addition, Moffitt et al. [111]
proposed the critical path delay improvement considering simultaneously the effects of
a set of different discrete gate changes such as gate relocation and gate sizing. The
changes which are finally applied to each gate are resulted solving a disjunctive tim-
ing graph. Jiang et al. [76] applied interleaved gate sizing with buffering and achieved
remarkably lower power consumption with higher performance, while Lillis et al. [88]
used an efficient method that combines wire sizing and buffering to further reduce the
dynamic power dissipation.

The main drawback of the integrated optimizations is the runtime. For each gate, the
number of alternative transformations that have to be considered increases substantially.
Typically, to overcome this problem, the integrated optimizations either use pruning
methods to avoid the exhaustive exploration of the solution space or they are applied
only on a subset of the total circuit. The latter means that the subcircuit selection is an
important factor for the effectiveness of the integrated optimizations because it trade-
offs the quality of the results and the overall runtime. For example, when small subcir-
cuits are selected, the number of combined optimizations is reduced leading to fast but
not so timing effective solutions. On the other hand, in large subcircuits higher timing
improvements are achieved but also more time is needed to evaluate them.

1.3 Thesis Contribution

Timing closure is a complex process that involves many iterative optimization steps ap-
plied in various phases of the physical design flow. The scaling of the size of the designs,
the examination of multiple modes of operations and multiple design corners including
also On-Chip Variations (OCV), are major critical challenges that timing optimization
should face effectively. To this end, we propose four timing optimization techniques that
tackle efficiently such challenges. The proposed approaches can be used both for global
timing optimization at the first steps of the physical synthesis flow or close to the end

20

1.3 THESIS CONTRIBUTION

where repairing timing violations requires incremental operations that are nondisrup-
tive and execute as fast as possible. In every case, the proposed methods are tuned for
runtime scalability that allows their application to very large designs without sacrificing
QoR.

1. A generalized approach for Lagrangian-Relaxation-based timing optimization is
presented that is used to iteratively relocate gates, flip-flops, and local clock
buffers, with the goal being to reduce timing violations [109]. In the proposed
approach, the cells are allowed to move within an appropriately positioned search
window, the location of which is decided by force-like timing vectors covering
both late and early timing violations. The magnitude of these timing vectors is
determined by the value of the corresponding Lagrange Multipliers. The intro-
duced placement optimization is applied in conjunction with a newly proposed
flip-flop clustering algorithm that (re)assigns flip-flops to local clock buffers, to
separate flip-flops with incompatible timing profiles and to facilitate the subse-
quent timing-optimization steps. The efficiency of the proposed methodology has
been proven by achieving the best overall results when compared to state-of-the-
art timing-driven placement techniques.

2. Even if timing is almost closed at the end of the flow, last-mile placement and
routing congestion optimizations may introduce new timing violations. These
violations require minimally disruptive solutions such as threshold voltage re-
assignment and gate sizing that affect only marginally the placement and routing
of the almost finalized design. To this end, a new way is presented about the trans-
formation of a powerful Lagrangian-Relaxation-based gate sizer, used for global
timing optimization early in the design flow, into a practical incremental timing
optimizer suitable for the final stages of the flow [106]. The new incremental op-
timizer corrects small timing violations with fast runtime and without increasing
the area/power of the design in both single corner and multimode multi-corner
designs [107].

3. To accelerate timing and power optimization a task-based parallel programming
template is proposed [105]. This approach utilizes all available parallelism and
enables significant speedup relative to custom multithreaded approaches. Task-
based parallelism is applied to all parts of the optimization engine covering also
parts that are traditionally executed serially for preserving maximum timing ac-
curacy. Using Taskflow as the parallel programming and execution engine, we
achieved a speedup of 1.7× to 2.8× for gate sizing optimizations with marginal
extra leakage power relative to state-of-the-art multithreaded gate sizers. This re-
sult was supported by two dynamic heuristics that restrict the number of examined

21

1 INTRODUCTION

gate sizes and simplify local timing updates. Both heuristics trade off additional
runtime reduction with marginal leakage power increases.

4. On-Chip Variations (OCV) introduce delay uncertainties which may cause tim-
ing violations. This problem drastically affects the clock tree that, besides the
growing design complexity, needs to be appropriately synthesized to tackle the
increased variability effects. To reduce the magnitude of the clock-induced OCV,
a new incremental approach is introduced that relocates the flip-flops and the
clock gaters in a bottom-up manner to implicitly guide the clock tree synthesis
engine to produce clock trees with increased common clock tree paths [108]. For
the relocation of the clock elements soft clustering approach is used, that is or-
thogonal to the method of building the clock tree. In the proposed methodology,
the clock elements are repeatedly relocated and incrementally re-clustered, thus
gradually forming better clusters and settling to more appropriate positions to in-
crease the common paths of the clock tree. This behavior is verified by applying
the proposed method in industrial designs, resulting in clock trees which are more
resilient to process variations, while exhibiting improved overall timing.

1.4 Thesis Organization

The remainder of this thesis is organized as follows:
Chapter 2 presents the proposed timing-based placement optimization. Initially, the

timing-compatibility clustering method is analyzed which aims in the creation of groups
that contain only timing compatible flip-flops. Next the proposed Lagrangian-Relaxation
(LR) based formulation for timing optimizations is described in detail. The formulation
is common for all types of cells and it can be used in order to relocate without limitation
combinational cells, flip-flops and as well as clock buffers. The overall placement op-
timization flow is presented later on together with the formation of the search window
that contains the candidate positions for each movable cell. At the end of the chapter,
the experimental results validate the efficacy and the efficiency of the proposed method.

Chapter 3 discusses how a Lagrangian-Relaxation based gate sizer can be transformed
to an incremental optimizer that can be applied fast to at the end of the physical synthesis
flow. At first, the basics steps of all LR-based gate sizer methods are presented. Then,
we highlight the slow convergence of this method when applied to almost finalized
designs with a few remaining timing violations. To improve convergence behavior, we
propose a smart initialization of the Lagrange multipliers. This chapter concludes with
the presentation of the experimental results covering designs with single and multiple
corners.

22

1.4 THESIS ORGANIZATION

Chapter 4 briefly reviews existing methods on accelerating important steps of the de-
sign flow and introduces the transformation of the multi-step timing optimization to a
task-based parallel program that favors high parallelism. After the presentation of the
overall template for a task-based parallel gate sizer, we describe in detail the formation
of the task graphs and the operations of the tasks involved in each step of the optimizer.
Additionally, two dynamic heuristics are introduced which can further speedup the exe-
cution time trading-off the overall QoR. Finally, the runtime scalability and the compet-
itive behavior of the proposed approach against similar state-of-the-art approaches are
derived from the experimental results.

Chapter 5 presents an iterative method to eliminate the timing degradation due to
clock-induced on-chip variations. Our approach relocates the flip-flops and the clock
gates appropriately in pre-CTS phase to create a better seed for the clock tree synthesis
engine to build clock network with less path divergence. Initially, the motivation behind
the hierarchical clustering-based flip-flop relocation is presented. In the following, we
discuss in details the overall relocation algorithm used for the flip-flops. The chapter
concludes with the presentation of a complete set of experimental results on industrial
designs.

Finally, a summary of this thesis is given in Chapter 6 including also interesting re-
search questions that remain to be answered as future work.

23

2 Lagrangian-Relaxation based
Timing-driven Placement

2.1 Introduction

Timing closure is a complex process that involves many iterative optimization steps ap-
plied in various phases of the physical design flow [85, 104]. Placement is instrumental
to the performance of the overall flow, since it determines the length of the wires and
their congestion in certain regions of the design. Long wires suffer from increased RC
delay (R: Resistance, C: Capacitance), while wire congestion may lead to routing critical
nets on non-minimum-distance paths to avoid congested regions. Over the last several
years, wire RC delay has not only accounted for the lion’s share of the total delay by
far, but its variation across the metal stack has also increased dramatically [100]. Such
critical factors have significantly increased the importance of timing-driven placement,
which is required to reduce timing violations within a reasonable runtime, even for very
large designs.

During global placement and cell spreading, the timing is optimized by controlling the
wire length of selected nets, or by trying to smooth the physical layout of timing-critical
paths [149,158,165]. The incremental timing-driven placement steps that follow global
placement try to move cells to appropriate locations, to improve timing, with minimal
disturbance to the initial placement. In [103], a linear program is utilized to minimize
the weighted wire length on critical paths, where the path-delay sensitivities are used
as weights. To avoid non-critical paths becoming critical, a novel criticality-adjacency
network concept is presented. The work of [132] presents new sensitivity and figure-of-
merit functions to guide cell relocation, while, in [84], net weights are computed using
a critical-path counting algorithm (the more paths a net affects, the larger its weight).
In [25], a differential timing model for moving timing-critical cells is adopted. The
validity of the timing model is maintained by constraining the placement changes.

The recently introduced Early Histogram Compression (EHC) [67] technique miti-
gates hold timing violations through re-assignments of Local Clock Buffers (LCB) to
flip-flops and appropriate LCB movements. Better results are achieved in [82], which
optimizes the clock arrival at each flip-flop by appropriate re-assignments of LCBs to

25

2 LAGRANGIAN-RELAXATION BASED TIMING-DRIVEN PLACEMENT

flip-flops and flip-flop movements, to improve hold violations while preserving the pre-
optimized setup violations. In contrast to such approaches, OWARU [77] utilizes Bézier
curves to smoothen the physical curve produced by the placement of the cells partici-
pating in timing-critical paths. Other approaches like [46] and [44] rely on analytic
formulations for relocating flip-flops, gates, and LCBs, or utilize non-critical cell relo-
cation and cell-swapping to improve Quality-of-Results (QoR).

Other approaches rely on the Lagrange Relaxation (LR)-based formulation of tim-
ing optimization, whereby the derived cost function guides cell relocation to reduce
timing violations [53, 96, 149, 165]. Using LR, the hard constraints of the optimiza-
tion are removed and incorporated into the objective function, each one multiplied by
a penalty term called a Lagrange Multiplier (LM). During optimization, LMs act as
dynamic weights that reflect both the timing criticality of each net and the number of
critical endpoints that it affects.

As opposed to previous methods that independently move combinational gates, flip-
flops, and/or LCBs using loosely-connected algorithms, we propose an LR-based timing-
driven placement algorithm that handles the relocation of all types of cells in a unified
manner. Each timing-critical cell is relocated iteratively through the selection of an
optimized position out of a set of appropriately selected candidate positions. Both the
selection of the best position, and the definition of the search window, are based on the
value of the LMs in each optimization round.

The proposed LR-based placement optimization methodology is complemented by a
pseudo-3D flip-flop clustering algorithm that clusters flip-flops according to their ge-
ographical location and the timing slacks of their D and Q pins. The objective is to
guarantee that flip-flops of the same cluster share a compatible timing profile (i.e., the
flip-flops should benefit in the same way by an increase, or an equivalent decrease, in
the clock arrival time). In this way, nearby timing-compatible flip-flops of the same
cluster can be driven by the same LCB, while timing-incompatible flip-flops are driven
by different LCBs, even if they are placed in the same region. This separation of timing-
incompatible flip-flops facilitates the timing optimizations performed later on by LR-
based cell relocation.

The proposed approach effectively combines the application of the following pro-
cesses to yield very promising results:

1. A proposed LR-based formulation for timing optimization that allows the han-
dling of gates, flip-flops, and LCBs in a unified manner.

2. LM-based calibration of the search window to detect candidate placements for
each cell.

26

2.2 TIMING COMPATIBILITY FLIP-FLOP CLUSTERING

3. A flip-flop clustering step that clusters flip flops unevenly, based on their timing
profile.

The derived results indicate significant improvements in Worst Negative Slack (WNS)
and Total Negative Slack (TNS) at a reasonable runtime, as compared to state-of-the-
art timing-driven placement-optimization techniques that include either closely related
LR-based optimization [53], or other highly-efficient heuristics [67, 77, 82].

2.2 Timing Compatibility Flip-Flop Clustering

The proposed timing-driven placement methodology relocates combinational gates, flip-
flops, and LCBs in a unified manner, to improve the circuit’s timing. Moving LCBs
relative to the group of flip-flops that they drive, increases or decreases the clock arrival
time. This change in clock arrival may be beneficial to some flip-flops of the group
and harmful to other flip-flops in the same group. For example, delaying clock arrival
would benefit flip-flops with negative D/positive Q late slack, and hurt the timing of
flip-flops with a positive D/negative Q late slack profile. Therefore, before applying any
LCB movement, we need to be sure that each LCB drives flops with compatible timing
profiles (i.e., all need an increase or reduction in clock arrival time, or are neutral to this
choice). To achieve this, we use a pseudo-3D clustering algorithm, where flip-flops are
clustered according to their (x,y) position and their timing profile. Flip-flops placed in
the same cluster are driven by the same LCB, while timing-incompatible flip-flops are
put in different clusters and driven by different LCBs.

The proposed clustering algorithm is given in Algorithm 1. Initially, each flip-flop is
given a timing profile that can belong to one of three categories depending on how the
clock arrival time would benefit the flip-flops’ timing: (a) faster clock arrival (fast), (b)
slower clock arrival (slow), and (c) neutral. Any finer-grained categorization is possible.
Neutral is considered compatible with both the fast and slow categories, while flip-flops
that belong to the fast and slow categories are incompatible. The list of clusters is then
initialized, and the iterative loop of flop-to-cluster assignment and cluster updating is
executed until convergence is reached (i.e., either all flip-flops remain attached to their
previously assigned clusters, or the maximum number of iterations is reached).

The proposed clustering algorithm is a variant of k-means clustering [74,166], which
minimizes the squared distance between each cluster center and its assigned flip-flops,
while also taking into account the timing profile of each flip-flop and the size of each
cluster. In this way, each cluster contains an appropriate number of timing-compatible
flip-flops, thereby facilitating the LCB movement that is subsequently applied.

27

2 LAGRANGIAN-RELAXATION BASED TIMING-DRIVEN PLACEMENT

Algorithm 1: Timing Compatibility FF Clustering
1 Assign a timing profile to each flip-flop;
2 InitClusters();
3 FF PriorityList← PrioritizeFlipFlops();
4 repeat // FF-to-cluster assignment
5 foreach FF i in FF PriorityList do
6 if i ∈ f ast then
7 Ccand ← {clusters with fast or neutral FFs} ;
8 else if i∈slow then
9 Ccand ← {clusters with slow or neutral FFs} ;

10 else
11 Ccand ←{all clusters};
12 end
13 best cost← inf ;
14 foreach cluster j in Ccand do
15 if size(j)!=MaxSize & canAssign(i,j) then
16 cost← AssignmentCost(i, j) ;
17 if (cost < best cost) then
18 best cost← cost ;
19 assign FF i to cluster j;
20 end
21 end
22 end
23 end
24 UpdateClusterCenter();
25 UpdateTiming();
26 UpdateFFTimingProfiles();
27 until convergence;

To improve timing, the proposed clustering creates clusters of unequal sizes on pur-
pose. The LCBs that drive flip-flops with fast timing profiles are less loaded relative to
the LCBs that drive flip-flops belonging to the slow category. This uneven loading de-
creases, or increases, accordingly the delay of the LCB with the goal being to improve
timing. Creating clusters of uneven sizes – to facilitate timing optimization – with k-
means is not directly possible. To achieve this goal in a practical manner, we artificially
shrink, or expand, the true Euclidean distance, without any further modification to the
clustering algorithm.

28

2.2 TIMING COMPATIBILITY FLIP-FLOP CLUSTERING

Table 2.1: Timing profile categorization
Early Late

Slack at Timing Slack at Timing
D pin Q pin profile D pin Q pin profile

+ + neutral + + neutral
+ − slow + − fast
− + fast − + slow
− −− slow − −− fast
−− − fast −− − slow

2.2.1 Assign a Timing Profile to each Flip-Flop

Initially, each flip-flop is assigned to one of the three categories shown in Table 2.1 for
late timing, and, separately, for early timing, after taking into account the timing slacks
(positive/+ or negative/–) at the D and Q pins of each flip-flop. In the case that the slack
is negative at both pins of the flip-flop, the timing profile of the flip-flop is determined
by the pin with the most negative slack, depicted as two negative minus signs (−−) in
Table 2.1.

The separate late and early timing profiles initially given to each flip-flop should be
merged to one final profile. When both timing profiles are the same, the final timing
profile for this flip-flop is the same common profile. If one of the two timing profiles for
a flip-flop is neutral (either for late or early timing), the timing profile for this flip-flop
is determined by the other non-neutral timing profile. On the contrary, when a flip-flop
belongs to contradicting categories in the late and early timing modes, the timing profile
for this flip-flop is the one selected for the most critical mode, i.e., the one with the most
negative slack in either the D or Q pins.

2.2.2 Initialize Clusters and Prioritize Flip-Flops

The total number of clusters is set equal to the number of available LCBs, and the
cluster centers are initialized to the positions of the corresponding LCBs. If no LCBs
are present, the number of clusters can be selected with any other density or maximum
fanout/capacitance criterion, and the center of each cluster is set to the position of a
randomly-selected flip-flop. We should note that the optimal number of clusters, k, for
this timing compatibility clustering is not obvious, and it can only be judged by the
final timing QoR obtained after executing the entire timing-driven placement flow for
various numbers of clusters. Each newly-created cluster is assigned to one flip-flop to

29

2 LAGRANGIAN-RELAXATION BASED TIMING-DRIVEN PLACEMENT

avoid leaving a cluster empty. We try to initialize each cluster with a fast flip-flop (if a
fast flip-flop exists nearby), taken from a list of the 20 most closely-placed flip-flops. If
this is not possible, the cluster is assigned to a neutral flip-flop to increase the freedom
of later assignments. If, however, all nearby flip-flops are slow, the cluster is assigned
to a slow flop. In this way, we increase the probability to initialize more fast clusters,
implicitly reducing the average size of a fast cluster relative to neutral or slow clusters.

Next, we prioritize the list of flip-flops, so the flip-flops with timing violations select
a nearby cluster first. If the number of flip-flops with a fast timing profile is larger
than the flip-flops with a slow timing profile, we first examine the fast flip-flops (those
flip-flops are put at the top of the FF PriorityList) and then the slow flip-flops. In the
opposite case (number of slow flip-flops exceeds the fast flip-flops), we first examine the
flip-flops that belong to the slow timing profile. Neutral flip-flops are always examined
last.

2.2.3 Flip-Flop Clustering

The assignment of flip-flops to clusters is outlined in lines 4–27 of Algorithm 1. For
each flip-flop examined, we identify which clusters are considered as valid assignment
candidates. For instance, a flip-flop with a fast timing profile considers only the clusters
that contain fast or neutral flip-flops as valid. The flip-flops with a neutral timing profile
are compatible with all other flip-flops and can be assigned to any cluster. When examin-
ing the assignment of flip-flop i to cluster j, we first check – with the condition in line 15
– that no cluster receives more flip-flops than the maximum allowed, and if this assign-
ment would cause flip-flop i to be incompatible with the flip-flops already assigned to
cluster j. The potential incompatibility may arise due to the new wire and LCB delays.
These new delays may, in fact, cause marginal, or potentially more notable, alterations
to the clock arrival times, which, in turn, may possibly make the timing profiles of the
flip-flops outdated. To accurately reflect the new clock arrival times, incremental timing
analysis should be performed, but this is prohibitively expensive when checking each
independent assignment. Instead, we focus this analysis only on “weak” flops that are
most likely to switch to a different timing profile after the changes in the clock arrival
times, i.e., flops with timing slacks in their D/Q pins in the range of ±50 ps. To quickly
estimate the timing impact of assigning flip-flop i to cluster j, we use the differential
timing model of [25] in a manner similar to [53].

This dynamic checking of the timing profiles can be disabled to significantly reduce
the overall runtime. As will be demonstrated in the experimental resuls later on, omis-
sion of this step has minimal impact on the resulting timing QoR. The reason is because
flip-flop to cluster reassigment rarely affects the timing profile of the flip-flops with sig-
nificant timing slacks; it may only disturb the weak flip-flops. Therefore, the flip-flops

30

2.2 TIMING COMPATIBILITY FLIP-FLOP CLUSTERING

Algorithm 2: AssignmentCost(FlipFlop f , Cluster c)

1 dist(f ,c)←
(
(c.x− f .x)2 +(c.y− f .y)2

)1/2 ;
2 w← 1;
3 if f ∈neutral and c has slow or only neutral FFs then
4 w← size(c)

MaxSize ;
5 else if f ∈neutral and c has fast FFs then
6 w← 1+ size(c)

MaxSize ;
7 end
8 return w ·dist(f ,c) ;

with significant timing slacks would be correctly separated, even if dynamic compatibil-
ity checking is disabled. The weak flops with outdated timing profiles would eventually
move to the neutral category via the subsequent timing optimizations, thus becoming
compatible with all other categories.

From all valid and compatible clusters, each flip-flop is assigned to the cluster that
minimizes the assignment cost computed according to Algorithm 2. The cost is the Eu-
clidean distance between flip-flop f and the center of cluster c, multiplied by a weight w.
The role of w is to create clusters with unequal sizes, to further improve timing: clusters
with fast/neutral flip-flops should contain fewer flip-flops than clusters with slow/neu-
tral flip-flops. The distance between a neutral flip-flop and a cluster that contains slow,
or only-neutral, flip-flops is scaled down by w, thus increasing the probability that the
neutral flip-flop is assigned to this cluster. In contrast, the distance of a neutral flip-flop
to a cluster with fast flip-flops is artificially increased, thus increasing the cost of this
assignment and making the assignment less favorable. In this way, the clusters with
fast flip-flops remain with fewer flip-flops in total. Weight w only scales the distance
of neutral flip-flops, while w is always equal to one for flip-flops of the fast or slow
categories.

When considering flip-flops of different sizes with different clock-pin capacitances,
the contribution of each flip-flop to the size of the cluster should be measured relative to
its clock-pin capacitance. The larger the clock-pin capacitance, the larger the equivalent
count in terms of primitive flip-flops. Hence, the size of each cluster would reflect the
total capacitance driven by the LCB of the cluster. The proposed algorithm will end
up producing clusters of fast flip-flops with less total capacitance relative to clusters of
slow or neutral, flip-flops.

31

2 LAGRANGIAN-RELAXATION BASED TIMING-DRIVEN PLACEMENT

2.2.4 Update Cluster Centers and Timing Profiles

When all flip-flops are assigned to a cluster, we need to update the center of each clus-
ter (line 24 in Algorithm 1) to the center of gravity of the flip-flops belonging to this
cluster. Each LCB moves to the center of the cluster to which it belongs. As the centers
of the clusters are moved to new updated positions, the LCBs are also moved and in-
stantly legalized to their new positions using the Jezz legalizer [123]. If LCB movement
is limited by a maximum displacement constraint, and the updated cluster center lies
outside the maximum displacement bounding box of the LCB, the center of the cluster
is slid towards the nearest location at the bounds of the displacement bounding box. In
this way, in every iteration, the location of the cluster center remains valid in terms of
detailed placement constraints.

When the dynamic update of timing profiles is enabled, an incremental static timing
analysis is performed after moving the LCBs to their new positions, to update the slacks
and the timing profiles of the flip-flops (lines 25–26 of Algorithm 1). Therefore, the new
– and accurate – timing profile of each flip-flop is available for the next iteration.

2.2.5 Clustering Behavior

To demonstrate the efficacy of the clustering technique with respect to the generation of
clusters of uneven sizes, we analyze the clustering behavior in a representative bench-
mark of the ICCAD-2015 benchmark set [81]. Specifically, Figure 2.1(a) depicts the
percentage of cluster sizes for each of the three flip-flop timing profiles (fast, slow, neu-
tral) for sb10. As shown in the figure, more than 30% of the fast clusters have sizes be-
tween 10-15 flip-flops, while an additional cumulative 20% corresponds to even smaller
clusters of 0-5 and 5-10 flip-flops. In contrast, the majority of clusters of slow and
neutral-only flip-flops have larger sizes; around 30% of all slow clusters have sizes of
20-25 flops. It should be noted that similar behavior has been observed in all examined
benchmarks.

More importantly, the behavior of the proposed clustering technique is robust with
respect to the total number of clusters. Figures 2.1(b) and (c) illustrate the percentage
of cluster sizes for the fast and slow categories, respectively, of the sb10 benchmark,
as the total number of clusters, k, decreases. Specifically, the number of clusters de-
creases from 100% (i.e., the number of clusters in the unmodified benchmark) down to
70% of the initial number. The decrease in clusters is achieved by uniformly removing
– while accounting for any disparities in cluster densities – a corresponding number of
clusters from the benchmark. As k decreases, both the fast and slow distributions shift
to the right, i.e., towards larger cluster sizes. Nevertheless, if we juxtapose the fast and
slow distributions, one can clearly see that, even as k decreases, the fast clusters are

32

2.3 LR-BASED TIMING OPTIMIZATION

0%

5%

10%

15%

20%

25%

30%

35%

40%

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50

S
iz

e
 %

 p
e
r
ti
m

in
g
 p

ro
fi
le

Cluster Sizes

Fast

Slow

Neutral

(a) All three types of clusters

0%

5%

10%

15%

20%

25%

30%

35%

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50

S
iz

e
 %

 o
f
fa

s
t
c
lu

s
te

rs

Cluster size

70%

80%

90%

100%

0%

5%

10%

15%

20%

25%

30%

35%

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50

S
iz

e
 %

 o
f
s
lo

w
 c

lu
s
te

rs

Cluster size

70%

80%

90%

100%

(b) Fast clusters only (c) Slow clusters only

Figure 2.1: (a) The percentage of cluster sizes for each timing profile (fast, slow, neu-
tral) for the representative sb10 benchmark of the ICCAD-2015 benchmark
set [81]. The percentage of cluster sizes for (b) only fast, and (c) only slow
clusters, as the number of cluster centers is artificially decreased.

still smaller, on average, than the corresponding slow clusters. This behavior unequivo-
cally demonstrates that the proposed flip-flop clustering achieves the desired objective,
irrespective of the number of available clusters.

2.3 LR-Based Timing Optimization

Our goal is to minimize the sum of early and late TNS, by appropriately relocating the
timing-critical cells of the design. Assuming that TNS is computed over the set E of
all the timing endpoints, including primary outputs POs and the input-D pins of the

33

2 LAGRANGIAN-RELAXATION BASED TIMING-DRIVEN PLACEMENT

LCB LCB

LCB

(a): Combinational gates (b): Local Clock Buffers (LCB)

PO

D Q

CLK

LCB

(c): Primary Outputs (POs) (d): Flip-Flops (FFs)

Figure 2.2: The definition of arrival times and delays di, j, including both wire- and arc-
delay, for different types of cells.

flip-flops (FFs) [12], the timing optimization problem can be stated as follows:

min : ∑
j∈E

(−sL
j)+∑

j∈E
(−sE

j) (2.1)

s.t.: sL
j ≤ 0, sE

j ≤ 0, ∀ timing endpoint j ∈ E

sL
j ≤ T −aL

j , sE
j ≤ aE

j , ∀ output j ∈ POs

sL
j ≤ rL

jD −aL
jD , sE

j ≤ aE
jD − rE

jD , ∀ input D pin of flip-flop j ∈ FFs

aL
i +dL

i, j ≤ aL
j , aE

i +dE
i, j ≥ aE

j , ∀ gate j ∈ Gates (Fig. 2.2(a))

aL
LCBi

+dL
i, j ≤ aL

jQ , aE
LCBi

+dE
i, j ≥ aE

jQ , ∀ Q pin of flip-flop j ∈ FFs (Fig. 2.2(d))

aL
LCBi

+dL
i, j ≤ aL

LCB j
, aE

LCBi
+dE

i, j ≥ aE
LCB j

, ∀ LCB j ∈ LCBs (Fig. 2.2(b))

Cell placement is legalized
Cell relocation distance ≤ maximum displacement

Variables sL
j and sE

j represent the negative slack at pin j ∈ E for late and early timing,
while T is the targeted clock period. The timing slack at each timing endpoint is the
difference between the required arrival time and the actual arrival time. Parameters a j
and aLCBj are the arrival times (late or early) at the output pins of a gate and an LCB,

34

2.3 LR-BASED TIMING OPTIMIZATION

respectively, while a jD and a jQ represent the arrival times at the D/Q pins of flip-flop j.
The required arrival time at the D pin of the same flip-flop is expressed as r jD . The delay
di, j is the sum of the wire and the cell delay from the output pin of cell i to the output
pin of cell j. Figure 2.2 illustrates in detail the timing arcs involved in the computation
of di, j for every type of cell. In the case of gates and LCBs, shown in Figures 2.2(a)–(b),
di, j comprises the wire delay from the output pin of the driving cell of the previous level
plus the delay of the jth gate or LCB. When pin j represents a timing endpoint like a
primary output (Figure 2.2(c)), di, j is only the corresponding wire delay. Similarly, as
shown in Figure 2.2(d), in the case of a flip-flop, di, j is the wire delay from the output
pin of the LCB that drives the clock pin of this flip-flop plus the clock-to-Q delay of the
flip-flop. Representing with I j the set of fanin cells of cell j, and with λ the LMs, LR
can incorporate the timing constraints of (2.1) into the objective as follows:

min : ∑
j∈E

(−sL
j)+∑

j∈E
(−sE

j)+∑
j∈E

λ
L
0 js

L
j +∑

j∈E
λ

E
0 js

E
j + (2.2)

∑
j∈POs

λ
L
PO j

(
sL

j −T +aL
j
)
+ ∑

j∈POs

λ
E
PO j

(sE
j −aE

j) +

∑
j∈FFs

λ
L
D j

(
sL

j − rL
jD +aL

jD

)
+ ∑

j∈FFs

λ
E
D j
(sE

j −aE
jD + rE

jD) +

∑
j∈Gates

(
∑
i∈I j

λ
L
Gi, j

(aL
i +dL

i, j−aL
j)+∑

i∈I j

λ
E
Gi, j

(aE
j −aE

i −dE
i, j)
)
+

∑
j∈FFs

(
λ

L
FFi, j

(aL
LCBi

+dL
i, j−aL

jQ)+λ
E
FFi, j

(aE
jQ −aE

LCBi
−dE

i, j)
)
+

∑
j∈LCBs

(
λ

L
LCBi, j

(aL
LCBi

+dL
i, j−aL

LCB j
)+λ

E
LCBi, j

(aE
LCB j
−aE

LCBi
−dE

i, j)
)

The Karush–Kuhn–Tucker (KKT) optimality conditions for the timing endpoints of
the design impose that λL

0 j + λL
PO j = 1, and λE

0 j + λE
PO j = 1, for each primary output

j ∈ POs, and λL
0 j +λL

D j = 1, and λE
0 j +λE

D j = 1, for the D pin of flip-flop j. Substituting
these equalities into (2.2) causes the slack variables sL

j and sE
j to cancel out and simplify

35

2 LAGRANGIAN-RELAXATION BASED TIMING-DRIVEN PLACEMENT

the problem as follows:

min : ∑
j∈POs

λ
L
PO j

(
−T +aL

j
)
+ ∑

j∈POs

λ
E
PO j

(−aE
j) + (2.3)

∑
j∈FFs

λ
L
D j

(
− rL

jD +aL
jD

)
+ ∑

j∈FFs

λ
E
D j
(−aE

jD + rE
jD) +

∑
j∈Gates

(
∑
i∈I j

λ
L
Gi, j

(aL
i +dL

i, j−aL
j)+∑

i∈I j

λ
E
Gi, j

(aE
j −aE

i −dE
i, j)
)
+

∑
j∈FFs

(
λ

L
FFi, j

(aL
LCBi

+dL
i, j−aL

jQ)+λ
E
FFi, j

(aE
jQ −aE

LCBi
−dE

i, j)
)
+

∑
j∈LCBs

(
λ

L
LCBi, j

(aL
LCBi

+dL
i, j−aL

LCB j
)+λ

E
LCBi, j

(aE
LCB j
−aE

LCBi
−dE

i, j)
)

Previous work on LR-based timing-driven placement [53, 96] assumed that flip-flops
and LCBs remain locked to their positions and cannot move. This over-simplification
allows the removal of the required arrival times from (2.3), since they remain constant.
However, this is not allowed in our work. Our goal is to incorporate the movement of all
types of cells, gates, flip-flops, and LCBs in the same LR-based formulation, covering
both late and early timing constraints. For this reason, we would like to remove the direct
contribution of the clock arrival time and keep only the arrival times on the datapath pins
in the optimization problem. For the register-to-register paths, we know that

rL
jD = aE

jCLK
+T − tsetup and rE

jD = aL
jCLK

+ thold, (2.4)

where aL
jCLK

and aE
jCLK

represent the late and early arrival times of the clock on flip-flop
j, and tsetup, thold are the setup and hold delays of the flip-flop. The clock arrival time
a jCLK and the arrival time at the output Q pin of a flip-flop a jQ are connected via the clk-
to-Q arc delay d jCLK,Q , i.e., aL

jCLK
= aL

jQ−dL
jCLK,Q

and aE
jCLK

= aE
jQ−dE

jCLK,Q
. Substituting

these equalities into the required arrival times of (2.4) leads to the following equations:

rL
jD = aE

jQ −dE
jCLK,Q

+T − tsetup (2.5)

rE
jD = aL

jQ −dL
jCLK,Q

+ thold, (2.6)

Using (2.5) and (2.6) in the place of the required arrival times r jD of (2.3), and consid-
ering that T , thold, tsetup remain unchanged during timing optimization, we end up with

36

2.3 LR-BASED TIMING OPTIMIZATION

the following formulation:

min : ∑
j∈POs

λ
L
PO j

(
aL

j
)
+ ∑

j∈POs

λ
E
PO j

(−aE
j) + (2.7)

∑
j∈FFs

λ
L
D j

(
−aE

jQ +dE
jCLK,Q

+aL
jD

)
+ ∑

j∈FFs

λ
E
D j

(
−aE

jD +aL
jQ −dL

jCLK,Q

)
+

∑
j∈Gates

(
∑
i∈I j

λ
L
Gi, j

(aL
i +dL

i, j−aL
j)+∑

i∈I j

λ
E
Gi, j

(aE
j −aE

i −dE
i, j)
)
+

∑
j∈FFs

(
λ

L
FFi, j

(aL
LCBi

+dL
i, j−aL

jQ)+λ
E
FFi, j

(aE
jQ −aE

LCBi
−dE

i, j)
)
+

∑
j∈LCBs

(
λ

L
LCBi, j

(aL
LCBi

+dL
i, j−aL

LCB j
)+λ

E
LCBi, j

(aE
LCB j
−aE

LCBi
−dE

i, j)
)

By differentiating (2.7) with respect to the arrival times, according to the KKT optimal-
ity conditions, and representing the set of fanin and fanout cells of cell j with I j and O j,
we end up with the following LM flow conservation rules:

• For each gate j ∈ Gates connected to other gates and flip-flops at its fanin and
fanout cones.

∑
i∈I j

λ
L
Gi, j

= ∑
k∈O j

λ
L
G j,k

+ ∑
k∈O j

λ
L
Dk

+ ∑
k∈O j

λ
L
POk

(2.8)

∑
i∈I j

λ
E
Gi, j

= ∑
k∈O j

λ
E
G j,k

+ ∑
k∈O j

λ
E
Dk

+ ∑
k∈O j

λ
E
POk

(2.9)

• For each flip-flop j ∈ FFs connected to other gates or flip-flops at its input D and
output Q pins.

λ
E
D j
+ ∑

k∈O j

λ
L
G j,k

+ ∑
k∈O j

λ
L
Dk
+ ∑

k∈O j

λ
L
POk

=λ
L
FFi, j

(2.10)

λ
L
D j
+ ∑

k∈O j

λ
E
G j,k

+ ∑
k∈O j

λ
E
Dk
+ ∑

k∈O j

λ
E
POk

=λ
E
FFi, j

(2.11)

• For each LCB j ∈ LCBs driving both clock pins of flip-flops or other LCBs:

λ
L
LCBi, j

= ∑
k∈O j

λ
L
FF j,k

+ ∑
k∈O j

λ
L
LCB j,k

(2.12)

λ
E
LCBi, j

= ∑
k∈O j

λ
E
FF j,k

+ ∑
k∈O j

λ
E
LCB j,k

(2.13)

37

2 LAGRANGIAN-RELAXATION BASED TIMING-DRIVEN PLACEMENT

LCBLCB

PO

PO

LCB

D Q

D Q

D Q

Figure 2.3: An example circuit used to illustrate the LM flow conservation rules to pre-
serve the KKT conditions for different types of cells. This figure also high-
lights the timing arcs involved in the computation of the local cost for each
cell relocation in Section 2.4.1.

• For each timing endpoint j ∈ E driven by pin i:

λ
L
PO j

= λ
L
i, j, λ

L
D j

= λ
L
i, j (2.14)

λ
E
PO j

= λ
E
i, j, λ

E
D j

= λ
E
i, j (2.15)

For gates, the incoming LMs are distributed to outgoing timing arcs that can be other
gates, input D pins of flip-flops, or primary outputs. The same holds for the LMs at
the output Q pins of flip-flops, while, on the contrary, the LMs of LCBs are spread to
other LCBs, or the clock pin of flip-flops. While the equality constraints for combina-
tional gates have been proven in previous work on LR-based optimization, the optimal
relation among LMs on the pins of flip-flops and LCBs, including both late and early
timing constraints, are introduced in this work. Applying the LM flow conservation
equations (2.8)–(2.15) to selected cells of Figure 2.3 gives the following result:

• For gate 6 (using Equations (2.8) and (2.9)),

λ
L
G3,6

+λ
L
G4,6

= λ
L
G6,9

+λ
L
PO10

+λ
L
D11

λ
E
G3,6

+λ
E
G4,6

= λ
E
G6,9

+λ
E
PO10

+λ
E
D11

38

2.4 OVERALL FLOW AND LR-BASED CELL RELOCATION

• For flip-flop 11 (using Equations (2.10) and (2.11)),

λ
E
D11

+λ
L
G11,12

+λ
L
PO13

+λ
L
D14

= λ
L
FF8,11

λ
L
D11

+λ
E
G11,12

+λ
E
PO13

+λ
E
D14

= λ
E
FF8,11

• For LCB 5 (using Equations (2.12) and (2.13)),

λ
L
LCB2,5

= λ
L
FF5,4

+λ
L
LCB5,8

λ
E
LCB2,5

= λ
E
FF5,4

+λ
E
LCB5,8

Substituting the LM equality constraints into the optimization problem, we end up
with a simplified objective function that combines the contribution of gates, flip-flops,
and local clock buffers in a unified cost function, for both late and early timing, while
it highlights the independent contribution of the clock-to-Q delays and their associated
LMs:

min : ∑
j∈FFs

λ
L
D j

(
dE

jCLK,Q

)
+ ∑

j∈FFs

λ
E
D j
(−dL

jCLK,Q
) + (2.16)

∑
j∈Gates

(
∑
i∈I j

λ
L
Gi, j

(dL
i, j)+∑

i∈I j

λ
E
Gi, j

(−dE
i, j)
)
+

∑
j∈FFs

(
λ

L
FFi, j

(dL
i, j)+λ

E
FFi, j

(−dE
i, j)
)
+

∑
j∈LCBs

(
λ

L
LCBi, j

(dL
i, j)+λ

E
LCBi, j

(−dE
i, j)
)

Previous LR-based timing optimizations derived similar cost functions, but of a more
limited scope, involving only gates for timing-driven placement (as done in [53,96]), or
gate sizing (in [98, 140]), or including gate sizing with local clock skew optimizations
for improving the late timing only (in [141, 146]).

2.4 Overall Flow and LR-based Cell Relocation

The overall flow of applying the LR-based cell relocation process is depicted in Fig-
ure 2.4. The flip-flop clustering step is executed once at the beginning of the flow, to sep-
arate timing-incompatible flip-flops. Then, the iterative LR-based timing-driven place-
ment optimization evolves in two steps. In the first step, assuming constant LMs, we try
to move a selected set of cells with the goal of minimizing the cost function (2.16). In

39

2 LAGRANGIAN-RELAXATION BASED TIMING-DRIVEN PLACEMENT

Flip Flop Movement

LCB Movement Gate Movement

Non Critical

Gate Movement

Incremental

Timing Update

LM Update

Incremental

Timing Update Converge?

Unified Cell Relocation

Flip Flop Clustering

LR timing-driven placement

Fast timing

recovery

YesNo

Initial Design

Final

Design

Figure 2.4: The overall cell relocation flow. Timing compatibility flip-flop clustering
facilitates the LR-based timing-driven cell relocation that interleaves the LM
updates and unified cell relocation until convergence is achieved.

the second step, the LMs are updated to reflect the new criticality of the corresponding
timing arcs. On every LM update (and before their initialization), a full incremental
timing update takes place.

In each iteration, all cells are relocated using the procedure described in Algorithm 3,
which approximately minimizes (2.16) by the Optimal Local Relocation (OLR) of one
cell at a time, assuming all the other cells are fixed. Flip-flops and LCBs are relocated
first, and then gates are traversed in forward topological order from the inputs to the
outputs (POs), i.e., OLR of a cell begins after all its fanin gates have been processed.
During OLR, each cell is moved conditionally to several candidate locations. For each
candidate position examined, timing is updated locally. This update involves build-
ing a new Steiner tree for each fanin and fanout net for the cell under relocation using
Flute [26], and recomputing the new delays/slews of the updated nets and all cells con-
nected to those nets, with slew propagation stopping at the immediate fanout of the cell

40

2.4 OVERALL FLOW AND LR-BASED CELL RELOCATION

Algorithm 3: Cell relocation

1 sel cells←Movable cells with timing violations;
2 sel cells←sel cells ∪ Non-critical cells at the immediate fanout of sel cells;
3 foreach cell j ∈ sel cells in topological order do
4 [best costL,best costE]← localCost(j) ;
5 best location←locationOf(j) ;
6 cand pos[j]← Candidate slots in Search Window[j];
7 foreach position (x,y) ∈ cand pos[j] do
8 move cell j to (x,y);
9 update timing locally;

10 [new costL,new costE]← localCost(j);
11 if (new costL < best costL) and (new costE < best costE) then
12 best costL←new costL ;
13 best costE ←new costE ;
14 best location← (x,y) ;
15 end
16 end
17 move cell j to best location ;
18 update timing locally ;
19 end

under relocation. Using the new delays computed after the movement, we evaluate the
local cost function, as described in the next sub-section. If the new local cost is better
than the previous best value, after testing separately the early and the late part of the
cost, this candidate location is stored. After trying all the candidate locations, the cell is
finally moved to the best stored location.

Every cell movement is made to a legal location using the Jezz legalizer [123]. In this
way, any disturbance to the neighborhood around the moved cell is directly taken into
account, and, if it degrades timing, it would be handled in the following iterations. Jezz
has been used without any modifications to prioritize the displacement of timing-critical
cells versus non-critical neighbors. Any other legalizer could have readily been used in
the place of Jezz.

Contrary to flip-flop clustering, Algorithm 3 does not examine all cells. Only cells
with timing violations and non-critical gates (with positive slack) on their fanout are
considered. These non-critical gates can change the load of the output net of the critical
driver and, therefore, improve its delay. For each cell, based on its current location, new

41

2 LAGRANGIAN-RELAXATION BASED TIMING-DRIVEN PLACEMENT

candidate positions are identified inside an appropriately constructed search window,
the size and orientation of which are biased by the local LMs. The formation of this
search window is described in Section 2.5.

Before the LM updates and after flip-flop and LCB relocation, the timing is updated
incrementally (in a global sense), in order to reflect the new arrival times and the re-
quired arrival times that emerge after cell movement.

The iterative optimization stops when a maximum number of iterations is reached, or
when TNS stops improving (by more than 1%) for two consecutive iterations. At the
end of the main optimization loop, a final brute-force timing recovery step is performed
on a list of a few most-critical paths to reduce only early violation.

2.4.1 Local Cost Function

To judge the suitability of each candidate location, we compute a local cost, using Algo-
rithm 4, which reflects the local value of the global cost function (2.16). The local cost
involves the summation of the product of the neighbor arc delays and the corresponding
LM for late and early timing. The late and early costs are computed separately to enable
the cell relocation algorithm to select the best candidate location. The local timing arcs
that are included in the calculation of the local cost function involve the timing arcs of
the cell under consideration, its immediate fanin and fanout cells, as well as the timing
arcs of the cells driven by its fanin cells (side arcs).

Algorithm 4: localCost(Cell c)

1 [costL, costE]← [0,0] ;
2 foreach arc i→ j of local arcs of c do
3 costL← costL + λL

i, j ·dL
i, j;

4 costE ← costE + λE
i, j · (−dE

i, j);
5 if arc i→ j is the clock-to-Q arc of a flip flop then
6 costL← costL +λE

D j · (−dL
jCLK,Q

);
7 costE ← costE +λL

D j ·dE
jCLK,Q

;
8 end
9 end

10 return [costL, costE];

For example, in the case of gate 6 shown in Figure 2.3, the local arcs used for evalu-
ating the local cost function consist of the timing arcs of the gate itself, (3→ 6 , 4→ 6),
the arcs of the cells driving gate 6 (12→ 3, 1→ 3, 5→ 4), the arcs of the immediate

42

2.4 OVERALL FLOW AND LR-BASED CELL RELOCATION

fanout of gate 6 (6→ 9, 6→ 10, 6→ 11), and the arcs of the cells being driven by the
fanins of the gate under consideration (4→ 7). For an LCB, like LCB 8 in Figure 2.3,
we consider the timing arcs with respect to other LCBs, or the clock pins of flip-flops:
local arcs = {{5→ 8},{2→ 5},{8→ 11,8→ 14},{5→ 4}}. Similarly, in the case
of flip-flops, the timing arcs of both D, Q, and clock pins are considered, covering all
the local fanin and fanout connections of the flip-flop. For flip-flop 11 in Figure 2.3, the
local arcs consist of the following set of arcs: local arcs = {{8→ 11,6→ 11},{5→
8,4→ 6,3→ 6},{11→ 12,11→ 13,11→ 14},{6→ 9,6→ 10,8→ 14}}.

2.4.2 Lagrange Multiplier Update

Initially, all LMs are initialized to 1. Then, the LMs for each PO and D pin of a flip-
flop, for late and early timing, are updated using the modified subgradient optimization
proposed in [152], [53], at the beginning of each iteration, as follows:

λ
L
j = λ

L
j

(
aL

j

rL
j

)
, λ

E
j = λ

E
j

(
rE

j

aE
j

)
(2.17)

After updating the output LMs, their values must be distributed to all nets satisfying
the flow conservation conditions (2.8)–(2.15). The distribution is performed by travers-
ing the circuit in reverse topological order. At each visited cell, the sum of LMs at the
output pins are distributed to the LMs of the input pins. When an LM value needs to be
distributed to multiple incoming arcs, this distribution is done based on the ratio of the
LMs of the corresponding timing arcs. Such distribution increases the LMs on critical
paths, and, therefore, the worst negative slack is also expected to be minimized. Also,
since LMs are accumulated at each branching point, the higher the number of violating
endpoints affected by an arc, the higher the value of the corresponding LM.

The update of the LMs of all internal timing arcs i→ j, λi, j, for late and early timing,
is done according to (2.18)–(2.19), following the method presented in [141]:

λ
L
i, j = λ

L
i, j

(
1−

rL
j − (aL

i +dL
i, j)

T

)K

(2.18)

λ
E
i, j = λ

E
i, j

(
1−

(aE
i +dE

i, j)− rE
j

T

)K

(2.19)

The numerator of each fraction is the slack at the output pin of cell j. If the slack is
negative, the term in the brackets is greater than 1, thus increasing the corresponding
LM. To increase the LM value on timing critical cells in high rate, we empirically set

43

2 LAGRANGIAN-RELAXATION BASED TIMING-DRIVEN PLACEMENT

K = 4. Smaller values give slower convergence, while larger values do not show further
improvement in timing QoR. On the other hand, when the arc is non-critical, the value in
the brackets is less than 1, thereby decreasing the LM value. When the slack is positive,
we set K = 1 to decrease the LMs slowly. This method prevents the criticality of a path
from being forgotten immediately after the timing violation at the endpoint is removed,
thus avoiding criticality oscillations, e.g., critical arcs becoming non-critical.

2.4.3 Timing Recovery with Flip-Flop-to-LCB Re-assignment

The efficiency of the timing-driven placement flow depends on the placement utilization
of the design, and on how much space is available for moving cells to their appropri-
ately selected positions with respect to timing. In certain cases, cells do not have much
freedom to move, due to nearby placement blockages, or macros. Therefore, when cell
relocation has converged – either because cells have reached their maximum displace-
ment limit, or there is limited placement freedom nearby – timing can be improved
solely by appropriate LCB-to-flip-flop re-assignment. In this context, we examine the
20 most critical flip-flops and test, in a brute-force manner, whether reconnecting each
flip-flop to a different nearby LCB would improve timing or not. Ten nearby LCBs
per flip-flop are examined. For each flip-flop-to-LCB re-assignment tried, we perform
a full incremental timing update, in order to be certain about the expected savings in
timing. Each examined flip-flop stays assigned to the LCB that offers the best overall
timing. The preferred LCB is the one that reduces TNS on early or late timing, without
increasing WNS on the opposite mode, i.e., late or early, respectively.

2.5 Placement of the Search Window

A critical aspect of the timing optimization process is the identification of appropri-
ate new candidate positions for each cell. In this work, cell movement is facilitated
through the use of a search window. This window encloses the candidate cell, and it
includes all positions that the cell could potentially occupy as part of the optimization
process. The proposed methodology, dictating how this search window is positioned
around the candidate cell, relies on vectors that indicate desirable cell-movement direc-
tions. Specifically, each fanin cell i ∈ I j and each fanout cell k ∈ O j is associated with
two independent vectors (one for late and one for early timing violations) on cell j: vL

i, j,
vE

i, j and vL
j,k, vE

j,k. These vectors indicate the desired direction of cell movement that
would be beneficial in terms of timing. All vectors originate from the center of cell j,
and they lay on the imaginary lines connecting the center of cell j to the center of all of
its fanin/fanout cells, as depicted in Figure 2.5(a).

44

2.5 PLACEMENT OF THE SEARCH WINDOW

Figure 2.5: (a) Two independent vectors (one for late and one for early timing violations)
are associated with each fanin and fanout cell; their magnitude reflects their
timing criticality. The vectors indicate the desired directions of cell move-
ment that would be beneficial in terms of timing. (b) All late and early
vectors are added together to form resultant late and early vectors T L and
T E . The directions and magnitudes of these resultant vectors determine the
orientation of the search window.

The magnitude of each vector is equal to the value of the LM between these two
cells (|vL

i, j| = λL
i, j, |vE

i, j| = λE
i, j and |vL

j,k| = λL
j,k, |vE

j,k| = λE
j,k). The higher the value of

the LM, the more timing-critical the net is, which results in a “stronger” (i.e., of larger
magnitude) vector. The LMs are considered ideal proxies, because they encompass the
timing criticality of each path, in terms of all timing arcs passing through that path.

As illustrated in Figure 2.5(a), all the late vectors vL
i,A, vL

A,k that act on cell A are always
attractive, i.e., they point towards the interconnected nets. By moving the pin in these
designated directions, the delay would be reduced, which would decrease the late timing
violation. In contrast, all the early vectors vE

i,A, vE
A,k are always repulsive, i.e., they point

away from the interconnected cells. By moving the pin in these opposite directions, the
delay would be increased, which would decrease the early timing violation. All vectors
acting on cell j can be viewed as individual “forces” pushing and pulling cell j in their
respective directions, towards and away from all interconnected cells. Naturally, these
individual “forces” can be added to evaluate the net late and early effects on cell j.
All late vectors are added together to form one resultant late vector T L, while a similar
process is followed to yield one resultant early vector T E , as shown in Figure 2.5(b).

The directions of these two resultant vectors must now be used to determine the exact
placement location of the search window with respect to cell j. Each of the two resultant
vectors T L and T E is projected onto the two coordinate axes, in order to extract its

45

2 LAGRANGIAN-RELAXATION BASED TIMING-DRIVEN PLACEMENT

Table 2.2: ICCAD-2015 Contest Benchmark Characteristics

Circuit # Nodes # Flops # LCBs Density Max. Disp. (µm)
Short Long

sb1 1209716 144266 7213 0.80 40 400
sb3 1213253 167923 8396 0.87 40 400
sb4 795645 176895 8843 0.90 20 400
sb5 1086888 114103 5704 0.85 30 400
sb7 1931639 270219 13510 0.90 50 500

sb10 1876103 241267 12063 0.87 20 500
sb16 981559 142543 7126 0.85 30 400
sb18 768068 103544 5177 0.8 20 400

x (horizontal) and y (vertical) components. Subsequently, the horizontal and vertical
components of the two vectors are added up in the following manner: all the positive
horizontal components (pointing to the right) are added to form |R j|; all the negative
horizontal components (pointing to the left) are added to form |L j|; all the positive
vertical components (pointing upwards) are added to form |U j|; and, finally, all the
negative vertical components (pointing downwards) are added to form |D j|.

Our goal is to place the search window of cell j in a position that is proportional to the
calculated values of |R j|, |L j|, |U j|, and |D j|. Let us assume that the bottom-left corner
of cell j is placed at the (x j,y j) position, the search window has width W and height H,
and the location of the bottom-left corner of the search window is at (xo,yo). Initially,
the search window is placed such that the bottom left corner of cell j is at the center of
the search window. Therefore, xo = x j− W

2 and yo = y j− H
2 . The new location of the

bottom-left corner of the search window, (x̂o, ŷo), is determined by using the following
equations:

x̂o = x j−
|L j|

|L j|+ |R j|
·W, ŷo = y j−

|D j|
|D j|+ |U j|

·H

Essentially, the ratios of the left-to-right components and the up-to-down components
determine the magnitude of the search window’s slide in x and y directions.

Having determined the final location of the search window for cell j, we identify a set
of N candidate positions uniformly spaced inside the search window. Let us denote the
spatial granularity in the x and y dimensions as stepx and stepy, respectively. The values
of stepx and stepy can be determined from the maximum displacement constraint and
the relationship W/stepx ·H/stepy = N. We iterate from ŷo to ŷo +H with granularity
stepy, and from x̂o to x̂o+W with granularity stepx. In this manner, a total of N different
candidate positions are investigated for cell j, all situated within the search window.

46

2.6 EXPERIMENTAL RESULTS

Table 2.3: Timing improvement with short and long displacement limits. Late/early
WNS (worst negative slack), late/early TNS (total negative slack) results, as
compared to the first-place winner of the ICCAD-2015 contest.

Short Displacement
Circuit

Late Early
WNS (ns) TNS (ns) WNS (ps) TNS (ps) LR

Init 1st Ours Init 1st Ours Init 1st Ours Init 1st Ours iter

sb1 -4.98 -4.66 -4.60 -459.74 -374.31 -369.19 -9.34 -3.83 0.00 -317.44 -41.56 0.00 6
sb3 -10.15 -9.43 -9.12 -1502.83 -1373.12 -1301.26 -78.36 -65.72 -4.74 -1458.78 -683.51 -17.44 5
sb4 -6.22 -5.94 -5.99 -3476.69 -3195.33 -3065.46 -12.55 -6.08 -8.40 -519.39 -173.92 -50.20 14
sb5 -25.70 -25.07 -25.11 -6965.15 -6779.95 -6639.30 -36.77 -36.77 -12.00 -591.42 -585.78 -111.40 4
sb7 -15.22 -15.21 -15.21 -1857.38 -1703.78 -1579.86 -7.65 -6.75 -6.80 -1985.85 -1943.74 -1821.19 6

sb10 -16.49 -16.18 -16.28 -33152.80 -32514.40 -31649.30 -8.62 -8.62 -2.02 -620.95 -361.06 -13.11 6
sb16 -4.58 -4.36 -4.24 -776.04 -514.25 -418.72 -10.65 -8.38 -2.49 -113.75 -30.67 -2.49 8
sb18 -4.55 -4.12 -4.08 -1034.80 -943.64 -929.43 -19.01 -3.81 -0.03 -283.00 -69.38 -0.03 4

Avg -10.99 -10.62 -10.58 -6153.18 -5924.85 -5744.06 -22.87 -17.50 -4.56 -736.32 -486.20 -251.98 6.62
Save - 4.57% 5.35% - 11.34% 15.66% - 29.96% 69.81% - 50.00% 84.29% -

Long Displacement
Circuit

Late Early
WNS (ns) TNS (ns) WNS (ps) TNS (ps) LR

Init 1st Ours Init 1st Ours Init 1st Ours Init 1st Ours iter

sb1 -4.98 -4.57 -4.42 -459.74 -351.23 -323.94 -9.34 -16.65 0.00 -317.44 -80.89 0.00 9
sb3 -10.15 -8.70 -8.27 -1502.83 -1160.04 -881.59 -78.36 -13.13 -3.29 -1458.78 -214.03 -16.50 16
sb4 -6.22 -5.76 -5.60 -3476.69 -2464.56 -2309.54 -12.55 -12.28 -3.13 -519.39 -53.84 -13.80 8
sb5 -25.70 -24.29 -24.70 -6965.15 -5842.23 -6327.55 -36.77 -36.77 -12.24 -591.42 -618.27 -54.01 5
sb7 -15.22 -15.21 -15.21 -1857.38 -1510.76 -1454.46 -7.65 -6.75 -7.35 -1985.85 -1958.34 -1820.90 7
sb10 -16.49 -16.07 -16.13 -33152.80 -31517.80 -29445.10 -8.62 -5.15 -2.40 -620.95 -373.75 -12.50 5
sb16 -4.58 -3.84 -3.35 -776.04 -265.56 -209.59 -10.65 -7.55 -1.85 -113.75 -37.64 -1.85 15
sb18 -4.55 -3.81 -3.80 -1034.80 -775.84 -701.43 -19.01 -1.95 -0.02 -283.00 -6.86 -0.02 20

Avg -10.99 -10.28 -10.19 -6153.18 -5486.00 -5206.65 -22.87 -12.53 -3.79 -736.32 -417.95 -239.95 10.62
Save - 8.79% 11.14% - 25.76% 31.46% - 22.26% 74.52% - 56.33% 86.47% -

2.6 Experimental Results

The proposed flow was implemented in C++ using the open-source RSyn framework [45]
as a single-threaded application. RSyn provides all necessary functions for netlist traver-
sal and cell relocation, as well as incremental timing analysis needed by the proposed
method. The new method is evaluated using the ICCAD-2015 benchmark set [81]. Ta-
ble 2.2 shows some of the basic characteristics of each of the benchmarks used as well
as the target density and the short and long maximum allowed displacement constraints
that all cells should satisfy. All experiments were performed on the same Linux-based
workstation using a 3.6 GHz Intel Core i7-4790 with four cores and 32 GB of RAM.
The final reported results are validated using the scripts provided by the contest orga-
nizers, and OpenTimer [72], which is the reference timer used for evaluation purposes
in the above-mentioned contest.

In all cases, our method executes the flow depicted in Figure 2.4, where flip-flop clus-
tering precedes the iterative LR-based timing-driven placement. In each iteration, for

47

2 LAGRANGIAN-RELAXATION BASED TIMING-DRIVEN PLACEMENT

the relocation of each cell, we identify 20 candidate positions uniformly spaced inside
a rectangular search window of size W=H=20 rows. For the examined benchmark set,
20 rows correspond roughly to 68µm, which covers almost all of the allowed displace-
ment in the case of the short displacement constraint, and it progressively reaches the
maximum displacement in the case of the long displacement constraint.

2.6.1 Comparison with winner of the ICCAD 2015 contest

Table 2.3 summarizes the results achieved by the proposed algorithm, as compared to
the initial design characteristics (‘Init’) and the performance of the first-place winner
(‘1st’) of the ICCAD-2015 contest [53]. As shown in Table 2.3, in all cases, the timing
of the designs is either almost the same with that derived by the winner of the contest, or
significantly better. Our method smoothly reduces both the late and early timing viola-
tions, without creating a tradeoff between the two. For instance, for short displacement,
the winner of the contest improves the initial late WNS and TNS by 4.57% and 11.34%,
respectively, on average, while the proposed method increases the average savings to
5.35% and 15.66%, respectively. At the same time, WNS and TNS for early timing
are significantly more improved, as compared to [53]: early WNS is reduced by a fur-
ther 40% (69.81% vs. 29.96%), on average, and early TNS by a further 34% (84.29%
vs. 50.00%), for the short displacement constraint. The obtained results represent the
combined effect of (a) the timing-compatibility clustering that separates incompatible
flip-flops, without enabling the dynamic timing update of the flip-flops’s profiles, (b)
the newly proposed LR-based timing optimization framework, and (c) the LM-driven
cell relocation technique that moves all types of cells in a uniform manner. The number
of iterations that LR-based cell relocation requires, per design, are depicted in the last
column of Table 2.3.

The proposed approach efficiently utilizes the greater placement freedom given by the
long displacement limit. In all cases, timing is improved when compared to the results
obtained for the short displacement limit, as shown in Table 2.3. To better highlight how
the proposed algorithm utilizes the available displacement, we performed timing-driven
placement optimization on benchmark sb3 for various displacement constraints. The
sum of early and late TNS achieved in each case is depicted in Figure 2.6(a). Timing
is improved with increasing displacement constraints, until saturation is reached, which
shows that the placement efficiency (in improving timing) has reached a plateau.

This result also stems from the proposed sliding of the search window. Figure 2.6(b)
displays the trajectory followed by a cell of the sb3 benchmark, and the progressive
placement of the LM-based sliding window and a fixed window of the same size. Using
the LM-based window, the cell is allowed to move quickly to its final destination by
examining more timing-effective candidate positions, thus helping in converging faster

48

2.6 EXPERIMENTAL RESULTS

200 400 8006000
850

950

1050

1150

1250

1350

1450

Maximum Allowed Displacement (um)

L
a
te

 T
N

S
 +

 E
a
rl

y
 T

N
S

 (
n

s
)

End

End

Fixed window

StartStart

LM-based

sliding window

(a) (b)

Figure 2.6: (a) Final TNS on benchmark sb3 for various displacement constraints. (b)
The evolution of cell relocation using the proposed LM-driven search win-
dow and an equally sized search window.

to an overall timing-efficient solution. Additional experimental results reveal that, in
all benchmarks, the replacement of the LM-based sliding of the search window by a
fixed search window would degrade the overall timing quality by 10% (computed as the
average degradation across all WNS/TNS timing metrics.)

The way the LMs are updated enables both fast convergence and better overall timing
QoR, since the delay of timing-critical arcs is appropriately emphasized relative to other
non-critical timing arcs. Figure 2.7 compares the normalized sum of late and early TNS
obtained using the LM update approach of [53] to that obtained when using the pro-
posed LM update technique, for the sb10 benchmark with long displacement limit. For
the proposed method, results with different exponents K for the LM updates of (2.18)-
(2.19) are also shown in the figure. Obviously, the proposed LM update method yields
significantly better TNS results than the LM update approach of [53]. As K is increased,
the proposed method exhibits faster convergence and better overall timing QoR. Beyond
K=4, further improvement in TNS is marginal, thereby leading us to the selection of K=4
for all our experiments.

The results of the proposed methodology presented thus far were obtained without
dynamic updates of the timing profiles in the flip-flop clustering step. If dynamic timing
update is enabled, the overall timing QoR is improved for the proposed method, as

49

2 LAGRANGIAN-RELAXATION BASED TIMING-DRIVEN PLACEMENT

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1 20 3 4 5 6 7

Iterations

of [16]
LM update

K = 1

K = 2

K = 4

K = 6

N
o

rm
a

li
z
e

d
 L

a
te

 T
N

S
 +

 E
a

rl
y

 T
N

S

Figure 2.7: TNS comparison between the LM update approach of [53] and the proposed
LM update approach for the sb10 benchmark. Higher exponent values of K
aim to increase the LMs of timing-critical arcs. As K increases, the TNS
decreases more quickly, with diminishing returns beyond K=4.

shown in Table 2.4. As an example, for the short displacement constraint, having the
accurate slack values during flip-flop clustering helps improve early WNS by a further
2% (71.84% in Table 2.4 vs. 69.81% in Table 2.3), while early TNS improves by a
further 1% (85.44% vs. 84.29%). Correspondingly, late WNS is improved by 0.2%
(5.56% vs. 5.35%), and late TNS by 0.5% (16.13% vs. 15.66%). The reason for
the minimal improvement is the fact that dynamic timing updates only affect weak flops
with small timing slacks. Even with stale timing profiles, those flops are easily corrected
by gate/flip-flop relocations in the subsequent optimization process.

Unfortunately, the minimal improvements in timing QoR with dynamic timing up-
dates enabled come at a hefty runtime cost of 6×, on average, relative to disabling the
dynamic timing updates. Hence, the decision to enable the dynamic timing update fea-
ture is left to the engineer, who may wish to investigate whether a particular design
benefits from this additional step, or not.

2.6.2 Comparison with recent state-of-the-art

In the following set of experiments, we compare the proposed algorithm to two recent
state-of-the-art timing-driven placement optimization methods; namely, EHC [67] and

50

2.6 EXPERIMENTAL RESULTS

Table 2.4: Late/Early WNS (worst negative slack) and late/early TNS (total negative
slack) results when dynamic update of timing profiles is enabled in the flip-
flop clustering step.

Short Displacement

Circuit
Late Early

WNS (ns) TNS (ns) WNS (ps) TNS (ps)

sb1 -4.55 -363.10 0.00 0.00
sb3 -9.10 -1290.17 -2.12 -7.21
sb4 -5.99 -3083.13 -10.00 -16.67
sb5 -25.11 -6635.68 -14.00 -115.30
sb7 -15.21 -1562.71 -6.80 -1832.40

sb10 -16.27 -31563.40 -1.37 -6.33
sb16 -4.23 -415.31 0.00 0.00
sb18 -4.07 -924.28 0.00 0.00

Avg -10.57 -5729.72 -4.29 -247.24
Save 5.56% 16.13% 71.84% 85.44%

Long Displacement

Circuit
Late Early

WNS (ns) TNS (ns) WNS (ps) TNS (ps)

sb1 -4.32 -313.12 0.00 0.00
sb3 -8.18 -860.39 -2.88 -7.99
sb4 -5.60 -2580.72 -4.00 -5.95
sb5 -24.29 -6176.79 -15.00 -60.10
sb7 -15.21 -1428.32 -6.87 -1830.00

sb10 -16.12 -28573.2 -1.37 -7.85
sb16 -3.30 -202.68 0.00 0.00
sb18 -3.79 -673.84 0.00 0.00

Avg -10.10 -5101.13 -3.77 -238.99
Save 11.88% 32.18% 77.24% 86.84%

FPUSM [82]. The obtained results are summarized in Table 2.5. The results of the
proposed methodology are obtained without dynamic updates of the timing profiles in
the FF clustering step. In most cases, the proposed methodology achieves similar, or
better, results, in terms of early timing, and it is always slightly better in late timing.
The average savings (‘Save’) reported in the last rows of Table 2.5 report the average
savings achieved by each method relative to the initial designs (‘Init’) reported in the
second column of Table 2.3.

51

2 LAGRANGIAN-RELAXATION BASED TIMING-DRIVEN PLACEMENT

Table 2.5: Timing improvement with short and long displacement limits. Late/early
WNS (worst negative slack), late/early TNS (total negative slack) results, as
compared to EHC [67] and FPUSM [82].

Short Displacement
Late Early

WNS (ns) TNS (ns) WNS (ps) TNS (ps)Circuit
EHC FPUSM Ours EHC FPUSM Ours EHC FPUSM Ours EHC FPUSM Ours

sb1 -4.67 -4.66 -4.60 -373.99 -374.25 -369.19 -0.04 0.00 0.00 -0.04 0.00 0.00
sb3 -9.53 -9.43 -9.12 -1373.51 -1373.13 -1301.26 -59.59 -21.58 -4.74 -393.55 -153.08 -17.44
sb4 -5.94 -5.94 -5.99 -3153.70 -3195.38 -3065.46 -5.50 -2.20 -8.40 -65.32 -3.42 -50.20
sb5 -25.08 -25.07 -25.11 -6775.95 -6779.94 -6639.30 -31.33 -36.77 -12.00 -271.98 -265.37 -111.40
sb7 -15.22 -15.21 -15.21 -1696.02 -1703.81 -1579.86 -6.75 -6.36 -6.80 -1875.86 -1858.34 -1821.19
sb10 -16.19 -16.18 -16.28 -32514.40 -32514.50 -31649.30 -5.87 -2.19 -2.02 -306.75 -9.09 -13.11
sb16 -4.04 -4.36 -4.24 -444.16 -514.25 -418.72 -0.05 0.00 -2.49 -0.06 0.00 -2.49
sb18 -4.08 -4.12 -4.08 -938.77 -943.69 -929.43 -2.56 0.00 -0.03 -22.80 0.00 -0.03

Avg -10.59 -10.62 -10.58 -5908.81 -5924.87 -5744.06 -13.96 -8.64 -4.56 -367.05 -286.16 -251.98
Save 5.39% 4.57% 5.35% 12.74% 11.34% 15.66% 53.02% 68.29% 69.81% 70.31% 81.12% 84.29%

Long Displacement
Late Early

WNS (ns) TNS (ns) WNS (ps) TNS (ps)Circuit
EHC FPUSM Ours EHC FPUSM Ours EHC FPUSM Ours EHC FPUSM Ours

sb1 -4.57 -4.57 -4.42 -351.06 -351.21 -323.94 -0.87 -0.43 0.00 -2.18 -0.43 0.00
sb3 -8.69 -8.70 -8.27 -1159.93 -1160.07 -881.59 -4.46 -5.54 -3.29 -9.10 -29.05 -16.50
sb4 -5.76 -5.76 -5.60 -2437.77 -2462.93 -2309.54 -12.28 0.00 -3.13 -55.62 0.00 -13.80
sb5 -24.29 -24.29 -24.70 -5840.52 -5842.28 -6327.55 -58.34 -36.77 -12.24 -61.10 -268.60 -54.01
sb7 -15.22 -15.21 -15.21 -1510.76 -1510.79 -1454.46 -6.75 -6.38 -7.35 -1958.34 -1858.48 -1820.90

sb10 -16.09 -16.07 -16.13 -31563.90 -31518.00 -29445.10 -2.73 -2.20 -2.40 -40.60 -3.47 -12.50
sb16 -3.69 -3.84 -3.35 -234.07 -265.57 -209.59 -0.20 0.00 -1.85 -0.31 0.00 -1.85
sb18 -3.78 -3.81 -3.80 -771.96 -775.87 -701.43 -0.20 0.00 -0.02 -0.20 0.00 -0.02

Avg -10.26 -10.28 -10.19 -5483.75 -5485.84 -5206.65 -10.73 -6.42 -3.79 -265.93 -270.00 -239.95
Save 9.27% 8.79% 11.14% 26.40% 25.76% 31.46% 50.70% 72.42% 74.52% 84.02% 82.29% 86.47%

Even though the improvements achieved by the proposed method may initially seem
modest, as compared to EHC and FPUSM, the comparison should be viewed in the cor-
rect overall context: both EHC and FPUSM are not complete, self-contained optimiza-
tion methods. Instead, they rely on another preceding technique to first close – as much
as possible – the negative slack for late timing. Upon completion of this first step by the
other technique, EHC and FPUSM focus on early timing optimization. This is precisely
the reason why these two methods were applied to the outcome of the first-place winner
of the ICCAD-2015 contest, which significantly pre-optimized (especially for late tim-
ing) the designs. On the contrary, the proposed methodology is self-contained and does
not rely on other techniques for any pre-optimizations.

It should also be noted that, even though EHC and FPUSM focus on LCB-to-flip-
flop re-assignments and LCB/flip-flop movements, the proposed approach generalizes
this methodology by moving LCBs and flip-flops inside LR-based placement. In gen-
eral, prior work only moves gates within LR-based placement. The new methodology is
holistic and all-encompassing in its optimization approach, surpassing the performance

52

2.6 EXPERIMENTAL RESULTS

Figure 2.8: The incremental timing savings relative to the initial benchmarks obtained
by each step of the proposed method, for early and late timing.

of EHC and FPUSM in most cases for late timing, and closely matching their perfor-
mance in early timing. More specifically, the new approach always performs better in
sb3 and sb5 in early timing, and it is always worse in sb10 in early TNS timing. The
latter is attributed to the fact that, in sb10, the early critical paths are between flip-flops
with very low placement freedom, because they are placed close to macros that block
placement.

The obtained timing QoR is the synergistic result of all three algorithms shown in the
cell relocation flow of Figure 2.4, i.e., FF clustering, LR-based cell relocation, and early
timing recovery. Figure 2.8 depicts the average impact of each step over all ICCAD
2015 benchmarks for short and long displacement limits. Timing-compatibility flip-flop
clustering prepares the LCB-to-Flip-Flop connections in such a way that it reduces early
timing, but leaves late timing unaffected. In contrast, the LR-based iterative optimiza-
tion that follows is more complete and provides a combined improvement in both early
and late timing. Finally, early timing recovery is a fast step that only contributes in early
timing and its effect is more pronounced in short displacement limits.

Finally, the proposed incremental timing-driven placement technique was compared
to OWARU [77], which focuses entirely on late timing optimizations. The obtained
results are presented in Table 2.6. For a fair comparison with OWARU, we have replaced
the performance numbers of our method (when applied as a whole) with the numbers
achieved for late timing when performing only LR-based gate relocation, excluding FF
clustering, FF and LCB movement, and timing recovery. In all cases, the proposed
approach achieves better results than OWARU [77].

53

2 LAGRANGIAN-RELAXATION BASED TIMING-DRIVEN PLACEMENT

Table 2.6: Timing improvement of late WNS (worst negative slack) and late TNS (total
negative slack) as compared to OWARU [77] using only gate relocation.

Late Timing/Short Displacement
WNS (ns) TNS (ns)Circuit

OWARU Ours OWARU Ours

sb1 -4.8 -4.61 -426 -368.30
sb3 -9.8 -9.12 -1408 -1301.49
sb4 -6.1 -5.99 -3379 -3092.90
sb5 -25.5 -25.13 -6916 -6660.28
sb7 -15.2 -15.21 -1759 -1582.20

sb10 -16.4 -16.31 -32816 -31707.00
sb16 -4.4 -4.25 -605 -424.06
sb18 -4.2 -4.08 -997 -928.58

Avg -10.8 -10.6 -6038.3 -5758.1
Save 2.75% 5.26% 6.15% 15.44%

2.6.3 Runtime comparisons

In addition to yielding timing improvements, the runtime of an optimization methodol-
ogy is also a critical attribute. The runtime evaluation results in Table 2.7 indicate that
the proposed approach is close to the state-of-the-art. Note that the reported runtimes
for the competing techniques are taken verbatim from their respective papers. Conse-
quently, those runtimes correspond to other machines with different specifications than
the one we used. Therefore, the comparisons can only be broadly and generally indica-
tive. Regardless, we include those runtime numbers here in a big-picture context, to
demonstrate that the runtimes of the proposed approach are reasonable, as compared to
the others.

The runtimes of the new technique are close – in some cases better, in others worse
– to the first-place winner of the ICCAD-2015 contest. However, the new approach
utilizes its runtime more effectively, by yielding substantially better QoR, especially for
early timing. In the case of long displacement, the new technique’s runtimes are longer,
since there are more options to search before converging to a solution. Also, the pro-
posed method exhibits more-or-less similar runtimes to EHC and FPUSM. However,
for a fair and meaningful runtime comparison to EHC and FPUSM, one would need to
also add the runtime of the first-place winner of the ICCAD-2015 contest to those tech-
niques. Recall, that both EHC [67] and FPUSM [82] are applied after the completion of
the optimization of the first-place winner.

The runtime of the proposed method is the additive result of the three main steps

54

2.7 CONCLUSIONS

Table 2.7: Runtime comparison of state-of-the-art timing-driven placement techniques.
Runtimes are reported in minutes.

Circuit
Short Displacement Long Displacement

1st EHC FPUSM Ours 1st EHC FPUSM Ours

sb1 23 84 10 31 32 84 10 43
sb3 23 92 23 21 27 92 25 49
sb4 17 39 11 137 19 39 10 65
sb5 23 88 16 17 25 88 15 20
sb7 43 172 21 38 53 172 20 41

sb10 40 166 18 102 37 166 18 88
sb16 19 73 9 28 22 73 10 41
sb18 15 41 9 10 16 41 10 32

Runtime (in minutes) of each step of the proposed methodology.
Method sb1 sb3 sb4 sb5 sb7 sb10 sb16 sb18

Sh
or

t FF-Clust 3.8 4.8 5.1 2.2 12.4 9.8 3.5 1.9
LR-Reloc 24.7 13.9 129.2 13.1 22.8 88.3 22.0 6.4
Tim-Rec 2.5 2.0 2.8 1.7 3.0 4.0 2.1 1.4

L
on

g FF-Clust 3.8 4.8 5.1 2.2 12.4 9.8 3.5 1.9
LR-Reloc 36.6 42.1 56.5 15.7 25.8 73.9 35.0 28.2
Tim-Rec 2.6 2.1 2.9 1.8 3.0 4.1 2.1 1.8

of the overall flow. The contribution of each part is shown at the bottom of Table 2.7
for all benchmarks. As expected, the LR-based cell relocation consumes the majority
of the runtime, while early timing recovery has a small marginal contribution. The FF
clustering’s runtime is always a small, or medium, percentage of the runtime of LR
relocation, and its runtime is, by construction, the same for long and short displacement
limits.

2.7 Conclusions

Timing-driven placement optimization is an integral cog of the complex process of
achieving timing closure, and it is one of the key determinants of the overall QoR. This
article presents a novel timing-driven placement optimization methodology based on an
extended Lagrange Relaxation formulation. The fundamental contribution of this new
approach is the concerted relocation of all types of cells (gates, flip-flops, and LCBs)
in a unified manner. The LR-based placement optimization is complemented by a flip-

55

2 LAGRANGIAN-RELAXATION BASED TIMING-DRIVEN PLACEMENT

flop clustering algorithm that ensures the timing compatibility of the flip-flops of each
cluster, thus facilitating the timing optimization through LCB movement. Additionally,
a simple, yet effective, scaling factor artificially changes the distances of the mem-
bers of the cluster from the cluster center. This helps create clusters of uneven sizes,
thereby appropriately delaying, or speeding up, the clock arrival time. Extensive exper-
imental evaluations using the ICCAD-2015 benchmarks demonstrate the efficacy of the
proposed methodology, as compared to four state-of-the-art timing-driven placement-
optimization techniques.

56

3 Incremental Lagrangian-Relaxation
based Discrete Gate Sizing and
Threshold Voltage Assignment

3.1 Introduction

Timing closure remains one of the most critical challenges of a physical synthesis flow,
especially when considering that chip designs usually operate under many different op-
erating conditions (e.g. different temperatures and voltages) with different electrical
properties. However, the timing constraints of more than one mode/corner should be
satisfied simultaneously at the end [94, 135]. Trying to remove a timing violation from
one timing scenario could easily create a new violation in another. This behavior of
the multimode multi-corner (MMMC) timing optimization, makes the physical process
even more challenging.

Except of the need for timing closure, the design should also be free of any design rule
violations such as maximum allowed capacitance and transition time. Large timing and
design rule violations are analyzed and removed at the first steps of the design flow using
efficient global optimization engines [104]. Still, a small set of remaining violations
always exist close to the end of the flow. Repairing such violations requires incremental
operations that are non-disruptive and execute as fast as possible. For instance, after
routing, we don’t want cells’ placement to change for improving timing since this would
cause re-routing a large part of the design thus possibly introducing new violations.

The problem becomes harder to solve when considering that the introduced timing
violations may involve multiple corners that may need significantly different actions to
remove them.

The least disruptive operations for improving design’s characteristics during physical
synthesis involve threshold voltage (VT) re-assignment and gate sizing [23, 104]. VT re-
assignment tradeoffs smaller delay with increased leakage power and does not perturb
routing nor it requires a new parasitics extraction after the change. Gate resizing, even if
not as simple as VT re-assignment, is still considered a fairly non-invasive operation. In
the worst case, increasing cell’s size (possibly avoiding exceedingly large changes) may

57

3 INCREMENTAL LAGRANGIAN-RELAXATION BASED DISCRETE GATE SIZING AND

THRESHOLD VOLTAGE ASSIGNMENT

require an additional local legalization step [123, 148] and local re-routing of certain
nets [25].

Inserting buffers is still an option at this step [4, 76, 151]. However, buffer insertion
may ruin local placement and routing, which may be hard to fix later in highly congested
designs. Other highly powerful optimization steps such as useful clock skewing are also
considered hard to apply at the end of the flow, unless there is no other practical way to
solve the remaining timing violations [42, 82, 151].

Gate sizing and VT assignment algorithms have a long history in physical synthesis
flows. Initial works assumed continuous sizes for the gates [43] but these approaches
had delay inaccuracies compared to the real discrete gate sizes [118]. Coudert et al. [29]
was from the first ones that proposed a gate sizing method that handles such discrete
sizes. Many different methods have been studied to solve the size selection problem
effectively. For example, linear programming (LP) has been used widely in the lit-
erature [11, 13, 75, 113]. Simulated annealing has been also used to solve the gate
sizing problem because it can be applied on circuits containing million gates [129].
Daboul et al. [30] used the formulation of resource sharing to select gate sizes. Other
approaches have proposed to apply dynamic programming (DP) [64, 92, 117, 124]. Al-
ternative works, use sensitivity functions and from the available sizes, select the size that
maximizes the power reduction with the minimal timing degradation [63, 78]. Some of
these works have been extended in order to handle multiple timing corners and scenar-
ios for more realistic designs [40, 135]. Even machine learning has been used for gate
sizing. The latest work of [101] uses deep reinforcement learning to change the sizes
and shows high quality final results.

Among the large set of available solutions, those that rely on Lagrangian Relaxation
(LR) achieve significantly better results [47, 97, 118, 140, 142, 146]. However, when
applied incrementally they need many iterations to converge even if the number of tim-
ing violators is small. Most LR-based sizers assume that they are allowed to initialize
every cell of the design to a chosen initial state, e.g., initialize all cells to their mini-
mum size [87], before beginning the optimization. This design disruption may seem
reasonable at the early steps of the flow but is not allowed close to the the end.

In this work, we propose a novel initialization strategy for multi-corner LR-based
timing/power optimizers across multiple operating conditions that combines two useful
benefits: On one hand we enjoy the optimization efficiency of an LR-based gate sizer
and on the other hand we enjoy fast runtimes and true incremental operation, i.e., the op-
timized design is only marginally different from the original design but with the timing
violations of multiple corners repaired. The method has been evaluated on benchmarks
with small timing violations across single and multiple corners and has proven that suc-
cessfully optimizes the timing with reduced runtime.

58

3.2 BASICS OF LR-BASED GATE SIZING

wire delay gate delay

(a): Combinational gates

PO

wire delay

D Q

wire delay

(b): Primary outputs (c): Flip-flops

Figure 3.1: The definition of the arrival times ai, a j and delay di, j for (a) combinational
gates, (b) primary outputs and (c) flip-flops.

3.2 Basics of LR-based gate sizing

A timing-driven optimizer tries to minimize the power (or area) of the design given a set
of timing constraints.

minimize: ∑
i

leakagei (3.1)

subject to: ai +di j ≤ a j ∀ timing arc i→ j

ak ≤ rk ∀ endpoint k

Variable ai denotes the arrival time at the output pin of cell i while di, j is the sum
of wire and cell delay of the timing arc i→ j which is defined from the output pin of
the gate i to the output pin of the gate j. Figure 3.1 depicts the delays involved in the
computation of di j for different cases. For combinational gates in the middle of a logic
netlist, as shown in Figure 3.1(a), di j is the summation of the wire delay and the gate
delay from output of gate i to the output pin of gate j.

Pin j may represent also a timing endpoint. Timing endpoints can be the primary
outputs (POs) of a design or the inputs of flip-flops. When pin j belongs to the set of
primary outputs (POs), as highlighted in Figure 3.1(b), delay di j is equal to the wire
delay connecting the output pin of driver i and primary output j. Similarly, when pin j
is a flip-flop input, shown in Figure 3.1(c), delay di j involves only the wire delay from
driver i to the input D-pin of the flip-flop j. Parameter rk is the required arrival time at
any timing endpoint k [12].

59

3 INCREMENTAL LAGRANGIAN-RELAXATION BASED DISCRETE GATE SIZING AND

THRESHOLD VOLTAGE ASSIGNMENT

Associating the constraint for each timing arc with a non-negative Lagrange Multi-
plier (LM) λi j, that acts as a penalty factor when the respective constraint gets violated,
and computing the KKT optimality conditions [10, 109, 118], allows us to simplify the
constrained minimization problem (3.1) to the equivalent unconstrained minimization
problem (3.2).

minimize: ∑
i

leakagei + ∑
i→ j

λi jdi j (3.2)

The KKT optimality conditions with respect to the values of LMs impose that equa-
tion (3.3) should hold during optimization for all pins of the design

∑
i→ j

λi j = ∑
j→k

λ jk (3.3)

For the example shown in Figure 3.2, equation (3.3) for gate 6 implies that λ36+λ46 =
λ67 +λ68.

State-of-the-art LR-based optimizers [47,97,118,140,142] try to minimize the global
cost function (3.2) using many iterations of local gate resizing and VT re-assignment
steps. The overall optimization flow is depicted in Figure 3.3.

Initially, all gates are downsized to their least leakage power option (lowest size and
highest VT) [87, 112] that does not violate any design rule constraint. Solving design-
rule violations early, simplifies the following local logic tuning steps. In the following,

Figure 3.2: Example design to show which LMs are considered in the computation
of local cost and to present the LM equalities to preserve optimality
KKT conditions which imply that the sum of input LMs must be equal
to the sum of output LMs. Thus, for the highlighted gate 6 the LMs
λ13,λ23,λ24,λ35,λ36,λ46,λ67 and λ68 multiplied with their corresponding
delays will form the local cost. For LM propagation, for gate 6, we should
guarantee that λ36 +λ46 = λ67 +λ68.

60

3.2 BASICS OF LR-BASED GATE SIZING

Initial Design

Initial Sizing

LM Initialization

Find Critical Corner

Yes
No

Final Design

Converge?

Timing Recovery

Power Recovery

Gate Sizing

LR-based

Timing Update
Incremental

R
e

c
o

v
e

ry
S

te
p

s
L

R
 o

p
tim

iz
a

tio
n

LM Update &
LM Propagation

Figure 3.3: The overall LR-based gate sizing optimization flow.

all LMs are set to a starting value, usually to 1, and the main LR optimization loop starts.
Each iteration of LR-based gate sizing begins with a full incremental timing update and
then evolves in two phases. In the first phase, the LMs are updated and propagated to
all gates to reflect the new criticality of the corresponding timing arcs. In the second
phase, for each gate, examined in topological order, all possible discrete cell sizes and
threshold voltages are tried, assuming constant LMs. The new version selected for the
resized gate is the one that minimizes the cost function (3.2) and does not introduce any
design-rule violations.

At each iteration, a full incremental timing update on all examined corners is needed
to reflect the new timing violations. From all the available corners, the most critical cor-
ner is identified [151] for the current iteration. When there aren’t any timing violations
in any corner, we name critical the timing corner that gives the lowest total slack.

With the new timing information updated, the LMs should be updated too. The update
may take different forms and can be either additive (λnew = γ+ δλold) or multiplicative
(λnew=γλold) [152]. Following the proposal of [47] we use a multiplicative LM update
depicted in (3.4):

λi j =λi j

(
1+

a j− r j

T

)1/M

∀ timing arc i→ j with a j ≥ r j

λi j =λi j

(
1+

r j−a j

T

)−M

∀ timing arc i→ j with a j < r j

(3.4)

Once the LMs have been updated, LMs must be propagated from output to input
following a reverse topological order. In this way, the timing criticality measured at the

61

3 INCREMENTAL LAGRANGIAN-RELAXATION BASED DISCRETE GATE SIZING AND

THRESHOLD VOLTAGE ASSIGNMENT

Algorithm 5: Find best size for gate g

1 min cost← inf ;
2 best size← size(g) ;
3 foreach equivalent size s of g do
4 resize g to s ;
5 if violates Design Rule Constraint(g) then
6 skip s ;
7 end
8 update timing locally(g) ;
9 if timing degradation around(g) then

10 skip s ;
11 end

// Using Equation (3.2)
12 cost← leakageg +∑i→ j around g λi jdi j ;
13 if (cost < min cost) then
14 min cost← cost;
15 best size← s;
16 end
17 end
18 resize g to best size ;
19 update timing locally(g) ;

timing endpoints should be transferred gradually to the internals gates of the design. LM
propagation updates the LM values of internal timing arcs while still respecting KKT
conditions (3.3)

The value of each LM reflects the timing criticality of each timing arc. LMs increase
fast for critical timing arcs and reduce for non-critical timing arcs to favor power reduc-
tion. Implicitly, LMs keep also historic information (for the lifetime of an optimization
run) with respect to the criticality of each timing arc. If a timing arc remained critical for
multiple iterations it is still assumed critical by keeping a high value of LM, even if the
slack at its output becomes positive in a certain iteration. In this way, drastic oscillations
between critical and non-critical timing arcs are avoided and the optimization evolves
smoothly reducing power while satisfying timing constraints.

Later on and assuming constant LMs, all gates are visited in topological order and for
each gate the best size is selected using the same procedure described in Algorithm 5.
First, the initial size of the gate is stored and then, each equivalent size of the gate

62

3.3 INCREMENTAL LR-BASED GATE SIZING

is tried. If the new tried size violates any design rule constraint, this size is rejected.
Otherwise, the timing is updated locally, recomputing the new delays and slews of all
nets that the examined gate is connected to. To avoid timing degradation, sizes that
violate timing constraints are also rejected. If not, the local cost is calculated as the
summation of the leakage power of the new size and the neighbor arc delays multiplied
by their corresponding LMs.

In the local cost only the arcs whose delay may have changed are included. These
are the arcs of the immediate fanin and fanout cells of the examined gate and the arcs
of cells driven by the gates fanin cells. Referring to Figure 3.2, changing the size of the
highlighted gate 6, the local cost consists of the arcs of its immediate fanin cells (1→ 3,
2→ 3, 2→ 4), its immediate fanout cells (6→ 7, 6→ 8) and the arcs of gates driven by
the fanin cells of gate 6 (3→ 5, 3→ 6, 4→ 6). After trying all the equivalent sizes, the
size that minimizes the local cost is selected.

The iterative optimization flow stops when the maximum number of iterations is
reached or when the Total Negative Slack (TNS) and total leakage power are assumed
unchanged. Some timing violations may still remain, if the gate sizing exchanged some
marginally positive slack to further reduce the power. The timing recovery step that
follows will solve these violations resizing only specific gates that affect many timing
endpoints. For these gates, only the next bigger size is tried and full incremental timing
update is performed. Once the timing is closed, the final power recovery step will try to
save leakage power without creating new timing violations. Again, each gate is resized
only to its either next smaller size or exact higher VT and an incremental timing update
is performed after each try, to have the accurate timing information.

3.3 Incremental LR-based gate sizing

The overall effectiveness of an LM-based gate sizer is the combined result of the initial-
ization of gate sizes, the strength of the local optimization and the appropriate update of
LMs.

Initializing all cells to their minimum size simplifies the removal of any design rule
violations and also may alleviate the design from timing violations because some gates
are faster due to the less output load. After initialization, the total leakage power in cost
function (3.2) assumes its minimum value. Thus, the sum of λi j di j products determine
which cell should be selected for each gate. This conclusion holds even if leakage and
delay participate normalized to the cost function. Increasing fast the LMs of critical
timing arcs guides the optimization to reduce their corresponding delay in order to min-
imize their λi j di j product. As long as timing constraints are not satisfied, LMs keep
increasing thus leading to cells with improved delay.

63

3 INCREMENTAL LAGRANGIAN-RELAXATION BASED DISCRETE GATE SIZING AND

THRESHOLD VOLTAGE ASSIGNMENT

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
N

S
 (

n
s
)

Iterations

case A

case B

case C

Figure 3.4: The evolution of TNS on each iteration of a LR-based gate sizer for three
cases of the same design. In case A the design is not optimized. In cases B
and C it is partially optimized thus exhibiting initially less TNS.

3.3.1 What is the problem?

In an incremental optimization scenario, which is the focus of this work, the first step
of the state-of-the-art LR-based gate sizing flow as depicted in Figure 3.3 cannot be
applied. Since the design is almost finalized, the gate sizer is not allowed to “reset”
the state of the design and initialize every gate to its minimum size. Therefore, since
all gates keep their already decided size the sum of leakage power in (3.2) may pos-
sibly dominate the cost function. The LMs that fit to this occasion are unknown and
initializing all of them to an a priori value, e.g. 1, may not be the best choice.

Inevitably, at the first iterations of LR-based gate sizing, lower power cells would
be preferred for each gate since they would minimize local cost at the expense of tim-
ing. Once timing would starting getting much worse and the corresponding LMs start
to take higher values, only then the λi jdi j products would favor the selection of the
delay-optimal cells. Due to improper initialization, state-of-the-art LR-based gate sizers
exhibit a counterproductive behavior. The less timing critical is the initial state of the
design, the more time an LR-based gate sizer would need to optimize it, when resetting
the state of the design is not allowed.

To highlight this behavior we performed an experiment using the pci bridge32 fast
design of the ISPD13 benchmark set. Figure 3.4 depicts the evolution of the design’s
Total Negative Slack (TNS) during LR-based gate sizing for three different cases. When

64

3.3 INCREMENTAL LR-BASED GATE SIZING

the design suffers from many timing violations (case A), the LR-based gate sizer is able
to find fast the way to improve timing, leading to almost closed timing after the first
six iterations. The rest iterations are used to improve leakage power without degrading
timing in the meantime.

On the other hand, if the design had initially less TNS (case B), LR-based gate sizer
prefers to improve power by degrading timing in the first six iterations before it starts
solving timing violations and achieving timing closure in iteration eleven. Similarly, if
LR-based gate sizing is applied on an already optimized design with only few timing
violations (case C), it will first convert many non timing critical paths to critical before
actually reducing TNS to almost zero.

It is clear that regardless of the initial TNS, LR-based gate sizing is powerful enough
to solve all timing violations. However, due to improper initialization, it fails to do this
fast in cases that it should have. Therefore, for the case of partially optimized designs
with a small set of timing violations, like case C of Figure 3.4, we need to derive an
incremental version of the LR-based gate sizer that would achieve high quality-of-results
and fast convergence.

3.3.2 What can we do about it?

To improve the applicability of the LR-based discrete gate sizer in an incremental opti-
mization context, we propose an efficient method for initializing the values of the LMs
so that the value of each LM is adaptive to the initial design state. In this way, the
LMs are not set to an a priori chosen value but the values of the LMs would reflect the
proper timing criticality of each gate relative to its already selected size, as seen near
the end of the physical synthesis flow. The proposed approach is non intrusive, since it
deals only with the initialization of the LMs, and can be used with any LR-based gate
sizer [47, 118, 140].

Determining the initial values of the LMs should not be based solely on the criticality
of the corresponding timing arcs. Assume, for instance, that the design contains a very
large gate that contributes a lot to its leakage power and currently has zero timing viola-
tions. In fact, we may assume that its output pin has a small positive slack. If we assign
to this gate a small initial LM due to its positive slack, we would lead the optimizer to
downsize it in the first iterations to save power. This choice may seem reasonable but it
fails to answer one critical question: why this gate has not been downsized earlier by the
multiple optimization steps that preceded? The most probable answer is that this gate
originally belonged to a set of critical timing paths. Optimizing those paths in the first
steps of the flow, resulted in selecting for this gate a fast (with small delay) but large
cell. Thus, any trial to reduce its size at the end of the flow would directly translate to
new timing violations.

65

3 INCREMENTAL LAGRANGIAN-RELAXATION BASED DISCRETE GATE SIZING AND

THRESHOLD VOLTAGE ASSIGNMENT

Based on this intuition, we choose to initialize the LMs following a balanced ap-
proach. We assign increased LMs to timing arcs that are either critical at the moment
or belong to high-power cells assuming that those cells may have been timing critical in
the past. This approach may lead to a temporary power overhead to cells that are indeed
not critical but remained large for the wrong reasons (e.g., a previously applied opti-
mization skipped them to save runtime). However, the first iterations of LR-based gate
sizer would identify this by gradually reducing their corresponding LMs thus turning
them to good candidates for power reduction.

The initial value for the LM of timing arc i→ j is set to:

λi j =

(
ai +di j

a j

P(g)
minP(g)

)K

∀ timing arc i→ j of gate g (3.5)

Gate g refers to the gate where the timing arc i→ j belongs. The starting value for
each LM is the product of two ratios. The first ratio reveals the timing criticality of the
arc i→ j. If the corresponding timing arc is responsible for the late arrival time at the
output pin of gate j, the sum of ai and the delay di, j will be equal to a j thus setting the
ratio to 1. In any other case, a j will be greater than the numerator and thus the ratio will
result to a value less than 1 signifying the non criticality of the arc. The second ratio
describes how much more power the current version of the cell spends P(g) relative to
the minimum possible leakage power that it can spend using any compatible library cell
for gate g. In overall, when timing critical arcs are coupled with high power cells will
get much greater LM values. The exponent K helps to increase faster the assigned LMs
values and we empirically set it to K = 2.

Similarly, for the LMs that correspond to the timing arcs i→ k, where k is a timing
endpoint:

λik =

(
ak

rk

∑gates P(g)

∑gates minP(g)

)K

∀ timing endpoint k (3.6)

If the signal arrives at the timing endpoint k earlier than its required time rk, i.e.,
ak < rk, signaling that there is no timing violation, the first ratio will result in a value less
than one. On the contrary, in cases that late timing is violated, with ak > rk, the first ratio
will be as big as the actual violation. For the power ratio in the case of timing endpoints,
we suggest that it should consider the design as a whole. For this reason, the power
ratio that is multiplied to the the timing ratio, divides the current total leakage power
of the design relative to the minimum leakage power that the design can achieve after
replacing each gate with a minimum leakage power cell. This ratio actually quantifies
how far the design is from its virtually minimum leakage power.

66

3.4 EXPERIMENTAL RESULTS

Once the LMs have been initialized, they need to be scaled in order to respect the
KKT conditions as described in (3.3). Following (3.3) the sum of LMs of the output
timing arcs of a gate should be equal to the timing arcs at its input. For instance, for the
gate 6 shown in in Figure 2, we should guarantee that λ67 +λ68 = λ36 +λ46.

To achieve this, each one of the input LMs λ36 and λ46 receive a percentage of the
sum of output LMs λ67 +λ68. How much of the sum of output LMs would flow to each
input LM is determined by the initial values λinit

36 and λinit
46 of timing arcs 3→ 6 and

4→ 6, respectively.

λ36 =
λinit

36

λinit
36 +λinit

46
(λ67 +λ68) λ46 =

λinit
46

λinit
36 +λinit

46
(λ67 +λ68) (3.7)

The initial values of λinit
36 and λinit

46 are derived using equation (3.5). When all gates
have been visited in reverse topological order and the LMs of the timing endpoints are
propagated internally, the optimization can start.

3.4 Experimental Results

The proposed method was implemented in C++ inside the open-source RSyn physical
design framework [45] after extending it for multi-corner timing analysis. The evalua-
tion involves already optimized benchmarks with only few timing violations. For this
purpose, we used the fully optimized versions of the benchmarks of the ISPD 2013 gate
sizing contest [116]. Those designs exhibit closed timing and minimized leakage power.
To introduce additional timing violations, we randomly changed the resistance and ca-
pacitance of each net by ±10% thus mimicking local re-routing operation at the end of
the physical synthesis flow.

Our approach is experimentally validated using the benchmarks of the ISPD 2013
gate sizing contest considering a single and a multiple-corner scenario. For the case of
multiple corners, we created two artificial (but realistic) timing libraries representing the
fast (timing derate 1.05) and the slow version (timing derate 0.95) of the main typical
library used in the single-corner case. Each cell in timing library has 10 sizes available
at 3 Vth, with a total of 30 sizes per cell.

3.4.1 Quality-of-Results and Runtime comparisons

Initially, we report the quality-of-results achieved for the proposed method (New) rel-
ative a state-of-the-art LR-gate sizer [47] (called Base) without allowing it to reset the

67

3 INCREMENTAL LAGRANGIAN-RELAXATION BASED DISCRETE GATE SIZING AND

THRESHOLD VOLTAGE ASSIGNMENT

Table 3.1: The timing and the leakage power of all designs under single corner initially
(Init) and at the end of incremental LR-based sizer without (Base) and with
(New) the proposed LM initialization.

Single corner
Design #Cells Late WNS (ps) Late TNS (ps) Leakage (mW)

Init Base New Init Base New Init Base New
usb phy slow 623 -1.53 0.00 0.00 -1.53 0.00 0.00 1 1 1
usb phy fast -0.61 0.00 0.00 -0.61 0.00 0.00 2 2 2

pci bridge32 slow 30763 -11.21 0.00 0.00 -333.10 0.00 0.00 58 58 58
pci bridge32 fast -16.66 -0.44 0.00 -614.66 -0.96 0.00 98 97 100

fft slow 33792 -16.35 0.00 0.00 -320.92 0.00 0.00 88 88 87
fft fast -18.18 -6.58 -1.88 -234.28 -63.37 -4.25 217 228 228

cordic slow 42937 -13.99 -14.43 -1.24 -801.84 -116.70 -2.11 306 349 309
cordic fast -13.26 -4.26 -6.94 -752.72 -30.00 -31.40 1139 1142 933

des perf slow 113346 -30.40 -1.88 0.00 -11,920.00 -5.26 0.00 449 410 420
des perf fast -25.80 -3.51 -4.10 -11412.20 -49.94 -8.69 609 522 556
edit dist slow 129227 -54.44 0.00 0.00 -21,881.50 0.00 0.00 452 447 445
edit dist fast -63.59 -3.34 0.00 -36,639.50 -15.16 0.00 624 630 610

matrix mult slow 159642 -44.00 0.00 0.00 -3292.93 0.00 0.00 481 487 476
matrix mult fast -33.07 0.00 0.00 -2694.75 0.00 0.00 1056 1230 1020

netcard slow 984094 -30.19 0.00 0.00 -1477.58 0.00 0.00 5160 5101 5102
netcard fast -28.97 0.00 0.00 -6394.27 0.00 0.00 5203 5144 5141

Average -25.14 -2.15 -0.89 -6173.27 -17.59 -2.90 996 996 968

state of the design. In other words, the optimization flow is the same as depicted in Fig-
ure 3.3 without performing the initial sizing step. Both cases actually utilize the same
LR-based gate sizer. Their only difference is on how they initialize the value of the LMs.
The obtained results are shown in Table 3.1 for single corner designs and in Table 3.2 for
multi-corner designs. Columns Init correspond to the design produced after randomly
perturbing the resistance and capacitance of the wires. In all cases, the optimization
stops if the improvement in terms of timing and leakage power across two iterations
is less than 1%. Tables 3.1 and 3.2 report the late Worst Negative Slack (WNS), the
late TNS and the total leakage power of each design under single and multiple corners,
respectively. The final reported timing results are validated by OpenTimer [72]. Please
note that ISPD2013 benchmarks do not exhibit early timing violations and thus early
timing information is omitted.

The first noticeable result is that “New” offers better timing results than “Base” in the
majority of the designs. With the proposed LM initialization, WNS is further decreased
by 24% on average, while TNS is improved by more than 36% on average compared
to the corresponding results of “Base” with only one corner. In multi-corners designs,
“New” helps improve WNS by a further 27% on average, while TNS improves by more
39%. In these cases, when timing slack reported is zero it means that timing constraints

68

3.4 EXPERIMENTAL RESULTS

Table 3.2: The timing and the leakage power of all designs under multiple corners ini-
tially (Init) and at the end of incremental LR-based sizer without (Base) and
with (New) the proposed LM initialization.

Multiple corners
Design Late WNS (ps) Late TNS (ps) Leakage (mW)

Init Base New Init Base New Init Base New
usb phy slow -0.03 0.00 0.00 -0.03 0.00 0.00 1 1 1
usb phy fast -6.38 -4.99 0.00 -14.39 -8.57 0.00 3 2 3

pci bridge32 slow -14.76 0.00 0.00 -485.44 0.00 0.00 60 59 59
pci bridge32 fast -21.40 -4.25 0.00 -280.77 -14.78 0.00 194 151 153

fft slow -10.74 -0.14 0.00 -194.37 -0.27 0.00 96 97 98
fft fast -8.21 0.00 0.00 -449.16 0.00 0.00 356 426 391

cordic slow -24.57 -0.68 -2.06 -1000.51 -1.09 -2.06 518 561 527
cordic fast -122.26 -92.07 -66.50 -5412.47 -2954.33 -1710.28 2604 3189 3220

des perf slow -34.07 -29.24 -14.08 -11,391.80 -42.13 -26.27 723 704 715
des perf fast -77.49 -46.25 -33.07 -19,884.50 -737.60 -216.15 1272 926 1038
edit dist slow -67.66 0.00 0.00 -36,892.70 0.00 0.00 477 473 471
edit dist fast -68.96 -11.22 0.00 -39,745.10 -77.41 0.00 766 791 754

matrix mult slow -43.79 0.00 0.00 -3254.51 0.00 0.00 576 591 574
matrix mult fast -36.16 -45.23 -33.02 -3243.41 -107.50 -41.07 1876 2357 2302

netcard slow -42.25 0.00 0.00 -2251.09 0.00 0.00 5163 5105 5105
netcard fast -28.96 -1.23 0.00 -10606.80 -2.34 0.00 5245 5187 5183

Average -37.98 -14.71 -9.3 -8444.19 -246.63 -124.74 1246 1289 1287

are satisfied in all corners. In all other cases, timing refers to the negative slack of the
most critical corner.

slow fast

usb_phy

slow fast slow fast slow fast slow fast slow fast slow fast

pci_bridge32 fft cordic des_perf edit_dist matrix_mult netcard

slow fast

Base New

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

li
z
e

d
 R

u
n

ti
m

e

Figure 3.5: The runtime of both methods under comparison for all benchmarks when
considering only one corner. The runtime is normalized to the runtime of
the “Base” run. In all cases, “New” allows faster convergence saving up to
45% execution time on average in single corner benchmarks.

69

3 INCREMENTAL LAGRANGIAN-RELAXATION BASED DISCRETE GATE SIZING AND

THRESHOLD VOLTAGE ASSIGNMENT

“New” also achieves slightly better leakage power than “Base”. For fair comparison,
we take into account only the leakage power savings from designs where both the “Base”
and the “New” flow succeeded to resolve all timing violations. In those cases, in single
corner designs “New” is 2% better on average, and 1% better on average in multi-corner
designs. The reason for choosing only the timing closed designs is that whenever there
are timing violations, the design’s power is lower than the power of the design with
closed timing.

Figure 3.5 compares the two approaches in terms of runtime when the designs have
one corner. All experiments were performed on the same Linux-based workstation using
a 3.6 GHz Intel Core i7-4790 with four cores and 32 GB of RAM. “New” is able to save
up to 45% of runtime on average achieving also better quality-of-results. In terms of
absolute runtime, the single corner “Base” finishes optimizing all designs in 9hrs, while
the proposed flow needs 5hrs for the same task. The runtime of “Base” and “New”
methods for designs usb phy (slow and fast) is similar due to their small size of the
designs.

Similarly, Figure 3.6, reveals the runtime savings of the proposed approach in a multi-
corner timing scenario. The runtime of “New” is by 42% on average less than the
average runtime of “Base”. Multi-corner “Base” finishes optimizing all designs in 12hrs.
When the proposed initialization method is used, the total execution time is reduced to
6hrs. The overall increased execution time of multi-corner optimization relative to the
single corner scenario is due to the increased runtime of performing timing analysis on
all corners.

slow fast

usb_phy

slow fast slow fast slow fast slow fast slow fast slow fast

pci_bridge32 fft cordic des_perf edit_dist matrix_mult netcard

slow fast

Base New

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

li
z
e

d
 R

u
n

ti
m

e

Figure 3.6: The runtime of both methods under comparison for all benchmarks when
considering multiple corners. The runtime is normalized to the runtime of
the “Base” run. In all cases, “New” allows faster convergence saving up to
42% on average with multiple corners.

70

3.4 EXPERIMENTAL RESULTS

3.4.2 Exploring in depth the proposed LM initialization

Additional experimental results reveal that the way the LMs are initialized is crucial for
the fast convergence and the overall timing QoR. Figure 3.7 compares the normalized
late TNS of fft fast design with one corner for different exponents K of the proposed
Equations (3.5) and (3.6). As the value of exponent K increases, higher LMs are
initialized to the timing critical arcs of the design. This means that the timing improves
faster with better overall QoR. For all our experiments we have selected K = 2 because
exponent values above K = 2 does not improve any further the QoR.

To observe more clearly how the proposed LM initialization helps the convergence of
an LR-based gate sizer, we monitor the evolution of TNS across consecutive iterations
initializing the LMs to different values. For the des perf fast design, shown in Fig-
ure 3.8, “Base” starts degrading the timing until iteration four where the TNS reaches
80ns. From this point, the actual optimization starts and the timing closure is achieved
in iteration ten. Applying the proposed Equations (3.5) and (3.6) (“New”), the opti-
mizer starts reducing the timing violations immediately without degrading the initial
state of the design and the timing constraints are met in iteration five. To further eval-
uate our work, we have also tried to initialize the LMs to different values where the
starting value of each LM was randomly selected (“Random”). In this case, the peak
of the TNS is increased compared to the “Base” run. More specifically, the TNS in

0.2

0.4

0.6

0.8

1

N
o

r
m

a
li

z
e

d
 L

a
te

 T
N

S

0 1 2 3 4 5 6 7 8

Iterations

K = 1

K = 2

K = 3

K = 4

Figure 3.7: TNS comparison for different values of exponent K for LM initialization as
proposed in Equations (3.5) and (3.6) for the representative design, fft fast.
Higher values of K increase the LMs of critical arcs leading to faster TNS
improvement during optimization iterations. Beyond K = 2, there are not
sufficient savings.

71

3 INCREMENTAL LAGRANGIAN-RELAXATION BASED DISCRETE GATE SIZING AND

THRESHOLD VOLTAGE ASSIGNMENT

T
N

S
 (

n
s

)

0

20

40

60

80

100

120

Iterations
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Base

New

Random

Ref [47]

Figure 3.8: The progression of late TNS on des perf fast design using different LM ini-
tialization methods; initializing the LMs to 1 (Base), using the proposed
method (New), initializing each LM to a random value (Random) and using
the initialization of [47] (Ref [47]).

iteration four is increased from 80ns to 110ns and thus 3 more iterations were needed,
compared to “Base”, to close the timing. Finally, we have tested the performance of
the LR-based gate sizer adopting the initialization method of work [47], in which the
authors start all the LMs from 12. Even though this modification could slightly decrease
the highest value of the TNS (compared to “Base”), the optimization showed slower

5

10

15

20

25

Init Base New

2840 142 21371 106 24835 177

N
u

m
b

e
r

o
f

D
e

s
ig

n
s

TNS (ps)

0

Figure 3.9: The histogram of late TNS initially (Init) and at the end of LR-based gate
sizing without (Base) and with (New) the proposed LM initialization. His-
tograms correspond to 100 versions of fft fast with randomly perturbed RC
characteristics.

72

3.4 EXPERIMENTAL RESULTS

Table 3.3: The timing and the leakage power of all designs under single corner with
gate size selection restriction without (Base) and with (New) the proposed
LM initialization.

Single corner

Design Late WNS (ps) Late TNS (ps) Leakage (mW)
Base New Base New Base New

usb phy slow 0.00 0.00 0.00 0.00 1 1
usb phy fast 0.00 0.00 0.00 0.00 2 2

pci bridge32 slow 0.00 0.00 0.00 0.00 58 58
pci bridge32 fast -1.65 0.00 -6.13 0.00 98 98

fft slow 0.00 0.00 0.00 0.00 88 87
fft fast -6.87 -1.01 -20.18 -2.24 224 221

cordic slow -8.79 -2.96 -67.21 -2.96 378 310
cordic fast -17.06 -2.73 -133.10 -4.81 1209 942

des perf slow -27.50 -1.40 -67.53 -4.52 480 464
des perf fast -14.41 -7.61 -47.42 -23.30 637 611
edit dist slow 0.00 0.00 0.00 0.00 450 449
edit dist fast -20.77 -1.95 -698.80 -2.16 623 619

matrix mult slow 0.00 0.00 0.00 0.00 478 479
matrix mult fast 0.00 0.00 0.00 0.00 1174 1020

netcard slow 0.00 0.00 0.00 0.00 5152 5153
netcard fast 0.00 0.00 0.00 0.00 5197 5194

Average -6.07 -1.10 -65.02 -2.50 1016 982

convergence. The TNS improvement delayed to start and the timing constraints were
finally met after multiple iterations, in iteration 15. From all the LM initialization trials,
“New” has shown the fastest convergence of all closing the timing really soon. Similar
results are obtained for all other designs. The proposed LM initialization successfully
“predicts” the value of the LM that fits better to the status of the design thus avoiding
un-necessary power reductions at the first iterations that would hurt timing initially and
delay convergence later on.

To be certain for the quality-of-results of the proposed approach, we repeated the
same experiment for each benchmark 100 times. Each time, the methods under com-
parison were applied on designs produced after perturbing randomly the wire parasitics
of the already optimized version of each benchmark. The histogram of TNS for the
initial design, and the ones produced after applying “Base” and “New” methods are
depicted in Figure 3.9 for benchmark fft fast, while similar results are obtained for all
other benchmarks.

73

3 INCREMENTAL LAGRANGIAN-RELAXATION BASED DISCRETE GATE SIZING AND

THRESHOLD VOLTAGE ASSIGNMENT

Table 3.4: The timing and the leakage power of all designs under multiple corners with
gate size selection restriction without (Base) and with (New) the proposed
LM initialization.

Multiple corner

Design Late WNS (ps) Late TNS (ps) Leakage (mW)
Base New Base New Base New

usb phy slow 0.00 0.00 0.00 0.00 1 1
usb phy fast -12.81 0.00 -42.00 0.00 2 2

pci bridge32 slow 0.00 0.00 0.00 0.00 62 60
pci bridge32 fast -22.20 -21.24 -189.58 -154.97 170 170

fft slow 0.00 0.00 0.00 0.00 100 98
fft fast -22.48 0.00 -92.88 0.00 366 365

cordic slow -1.48 0.00 -1.86 0.00 705 516
cordic fast -113.97 -112.70 -5604.24 -4867.80 3325 3389

des perf slow -30.88 -18.45 -207.30 -125.34 728 713
des perf fast -68.24 -47.37 -1520.11 -386.81 1205 1229
edit dist slow 0.00 0.00 0.00 0.00 478 477
edit dist fast -3.11 -0.48 -3.11 -0.85 824 758

matrix mult slow 0.00 0.00 0.00 0.00 602 580
matrix mult fast -26.23 -27.31 -42.98 -43.54 2214 2154

netcard slow 0.00 0.00 0.00 0.00 5172 5158
netcard fast -4.70 0.00 -7.60 0.00 5250 5236

Average -19.13 -14.22 -481.98 -348.71 1325 1307

TNS histograms reveal that both approaches successfully decreased the original TNS.
“Base” decreased the mean of initial TNS from 225 ps to 65 ps, while “New” managed
to compress the TNS histogram to the left side of the diagram, with the majority of
samples gathered close to 5 ps.

3.4.3 Optimization with a restricted number of available gate sizes

For completeness, we evaluated both “Base” and “New” methods under comparison in
a more restrictive scenario. In this case, gate sizing is only allowed to resize cells only
to their next bigger or smaller size without limiting VT swapping options, since they do
not alter the physical layout. This restriction makes sense at the final steps of physical
design flow to preserve as much as possible the already defined detailed wire routes. The
obtained results of single corner and multi-corner benchmarks are depicted in Table 3.3
and in Table 3.4, respectively. Besides the restricted availability of gate sizes, “New”

74

3.5 CONCLUSIONS

achieves considerable improvements. In single corner designs, late WNS is improved
by 36% on average while the savings in TNS reach 39% on average, when compared to
the baseline single corner LR-based gate sizer. In terms of leakage power, the restricted
“New” method achieves less leakage power by 2% on average, when considering only
the designs without negative slack at both methods under comparison. For multiple
corners, late WNS is improved by 35% on average, while late TNS improves by 39%
on average when compared to the corresponding timing results of “Base”. Also “New”
achieves slightly less leakage power by 2% on average.

3.5 Conclusions

Efficient incremental and minimally disruptive optimization steps at the end of the de-
sign flow are crucial for the overall success of automated physical synthesis. In this
work, instead of relying on custom-made timing and power optimization heuristics, we
leverage, LR-based optimizers used for the global optimization of the design, as fast
incremental optimizers after appropriate initialization. Initialization involves selecting
appropriate values for the LMs after taking into account both their timing criticality, in
a multi-corner context, as well as the current size of the gates. In this way, we expedite
successfully the convergence of the LR-based gate sizer, when applied in an incremen-
tal optimization context, without affecting any part of its internal functions and without
reducing the achieved quality-of-results.

Experimental results have also shown that relying on constant LM initialization values
as done by similar state-of-the-art optimizers or using randomly selected constants do
not achieve the smooth convergence needed in the case of last-mile incremental timing
optimizations. Initializing the LMs with hand selected constants provides an inaccurate
picture of the design to the LR optimizer. This picture translates to un-necessary power
reductions and timing degradation at the beginning of the optimization and inevitably
leads to many more iterations before re-converging back to an timing optimized solution.
This deficit has been corrected by the proposed approach and allows LR-based global
optimizers to be successfully used as fast incremental timing optimizers.

75

4 Task-based Parallel Programming for
Gate Sizing

4.1 Introduction

The implementation of physical synthesis algorithms should satisfy multiple contradic-
tory goals [85]. First comes Quality-of-Results (QoR): to place and route a design that
satisfies the required timing, area and power constraints [100, 104]. Then comes effi-
ciency that should not compromise QoR: execute physical synthesis algorithms in the
least amount of time even for very large designs. Last but not least is performance
portability [9]: the implementation should be agnostic to the particularities of the hard-
ware platform thus enabling physical synthesis engines to take advantage of new diverse
computing hardware with the least effort for software adaptation.

Currently, the majority of the physical synthesis engines are manually parallelized
with custom thread pools and work allocators developed using well-known multi-threaded
programming interfaces [31,130,164]. Even if such efforts have shown good scalability,
the performance starts to level off after a few active threads. There are multiple reasons
for this limitation. In many cases, the algorithms are graph oriented and although they
exhibit high degrees of parallelism, the patterns of parallelism involve irregular com-
putations and possibly poor data locality that are harder to exploit than the structured
parallelism patterns found in computational science [70, 114]. Also, the combined en-
gineering effort required to describe algorithmic novelty together with multithreaded
efficiency is not trivial and may lead to sub-optimal results. Additionally, custom thread
management and scheduling may be inefficient or hard to adapt to new computing plat-
forms.

To overcome such limitations, our goal is to separate algorithm development, that
should focus solely at the relevant problem, e.g., placement, routing, or timing optimiza-
tion, from its parallel execution. To achieve this goal, we argue that physical synthesis
algorithms should be described as task-based parallel programs.

In task-based models, the programmers define elementary blocks of source code as
individual tasks and express dependence relationships between those tasks [70]. In this
way, the programmers do not manage processes or threads anymore but they focus only

77

4 TASK-BASED PARALLEL PROGRAMMING FOR GATE SIZING

on how to decompose their program into tasks. Contrary to other parallel programming
approaches, task-based programming is easier, safer and more efficient to human pro-
grammers [9]. In this way, physical synthesis software architecture is stable and can
enjoy long-term availability, ease of maintenance and high performance across current
and future computing platforms.

In this work, we derive a generic template for timing optimization using task-based
parallel programming and apply it to gate sizing, i.e., select for each gate an appropriate
size and threshold voltage from a discrete set of library cells [85]. The same template can
be used for various forms of timing optimization such as timing-driven placement [109]
or logic restructuring [150]. The presented approach can be used both for global timing
optimization at the first steps of the physical synthesis flow or close to the end where
repairing timing violations requires incremental operations that are nondisruptive and
execute as fast as possible [106].

Timing optimization algorithms are often iterative and exhibit irregular computational
patterns and complex control flow [109, 118]. For this reason, we selected Taskflow for
transforming the multi-step timing optimization to a task-based parallel program. Other
candidates, such as Intel oneTBB FlowGraph [130], OpenMP tasks [31] were not cho-
sen. These models require programmers to implement control flow decisions outside the
task dependency graph thus creating complicated implementations that compromise par-
allelism [70]. Taskflow [70] offers a simpler programming interface and allows building
hierarchical task graphs. Also, it supports conditional dependencies and cyclic execu-
tion patterns that have already been used in accelerating static timing analysis [69] and
detailed placement [90].

In overall, this work’s contributions are summarized as follows:

1. We introduce a generic task-based parallel programming template for timing op-
timization and test it on gate sizing algorithms. The presented approach covers
all phases of a powerful Langrange-relaxation based gate sizer covering initial
sizing, main iterative sizing and final recovery steps. All steps are parallelized for
the first time –to the best of our knowledge– without requiring any steps executed
serially and without compromising quality of results.

2. For better exploring the runtime vs quality tradeoff, we propose two heuristics
that (a) re-evaluate at each iteration the search space of examined sizes per gate
and (b) dynamically assess the criticality of local timing arcs. The gates with not-
critical timing arcs are pruned from the local timing graph thus speeding up local
timing updates.

3. Using the task-based formulation and reducing dynamically the examined sizes
per gate gives a speedup of 1.7× to 2.8× when compared to state-of-the-art mul-

78

4.2 RELATED WORK

tithreaded gate sizers with only a marginal increase in leakage power. When en-
abling fast local timing updates, runtime is reduced further.

4.2 Related Work

Gate sizing has been traditionally considered as a powerful tool for timing closure and
power reduction that could execute in a reasonable runtime even for very large de-
signs [29, 64]. Approaches that used linear programming have been also proposed. In
these cases, positive slack was distributed to gates using linear programming with the
goal to maximize power savings [23, 113]. Then, gate sizes were selected based on the
available slack. Similarly, Held et al. [60] assigned slew targets, instead of delay targets
and achieved better results.

Langrangian Relaxation (LR) has been widely used for design optimization in recent
years. Ozdal et al. in [118] proposed a graph model to effectively decide the sizes of the
LR-based gate sizing problem. LR-based gate sizing has been refined in [47] and [143].
To resize both data and clock gates Shklover et al. [146] extended the traditional LR
method with clock-related formulations, while the work of [109] introduced a way to
optimize all types of gates (e.g. flip-flops, combinational gates and clock buffers) using
the same LR formulation.

Even the most efficient algorithms required parallelism to scale to increasing design
sizes. A sensitivity-guided metaheuristic method that optimizes power and timing using
parallel execution was proposed in [63] and enhanced in [78]. Sharma et al. in [143]
implemented a multithreaded gate sizer using OpenMP obtaining good QoR with fast
runtimes. This approach has been tested in an industrial setup in [24]. Intel’s threading
building blocks [130] have been used in the most computational intensive parts of the
optimization flow of [87] and [134]. The Galois parallelization framework [114] has
been used in [59, 110] to speedup global and maze routing. More closely related to this
work, OpenTimer [69] exploited Taskflow to accelerate efficiently static timing analysis
with task-based parallelism.

Other approaches have focused on speeding up execution of EDA algorithms in GPUs.
Liu et al. [93] use a GPU to accelerate a dynamic-programming-based gate-sizer [92].
Also, a GPU has been employed in [52] to accelerate static timing analysis. GPUs were
used also for accelerating path-based timing analysis [50, 51] and placement. In the
latter case, global [89] and detailed placers [90] executed on GPUs show tremendous
speedups in designs with million of gates when compared to multi-threaded implemen-
tations for CPUs.

79

4 TASK-BASED PARALLEL PROGRAMMING FOR GATE SIZING

Start

Initial sizing

M
a
in

 o
p

tim
iz

a
tio

n

Forward pass

iSTA

1

Check
convergence

Backward
pass

Stop?
0

R
e
c
o

v
e

ry
 s

te
p

End

1

0

iSTA

Stop?

Forward
recovery pass

Figure 4.1: The overall task dependency graph that consists of initial sizing, the main
optimization loop and the final recovery loop.

4.3 Generic Gate Sizing Template

Timing and power optimization approaches consist mainly of three core steps: initial
preparatory optimization, the main iterative optimization, and final timing and power
recovery. The organization of these three main steps are depicted in the top-level task
graph shown in Figure 4.1. Rectangular tasks represent hierarchical blocks that can
be further unwrapped to simpler tasks, round tasks are tasks executed at this level of
abstraction, while diamond-shaped tasks represent conditional tasks. Conditional tasks
check for a certain condition and determine accordingly the flow of execution. Solid-line
edges between tasks represent dependence relations. On the contrary, dashed-line edges
are conditional dependencies used in Taskflow [71] for describing cyclic processes.

Initial sizing that is executed first guarantees that gates are properly initialized so
that they do not violate maximum load capacitance and maximum input slew design
rules [87]. The forward pass (FP) of the main optimization loop selects appropriate sizes
for each gate with the goal to minimize the selected cost function that reduces power and

80

4.4 INITIAL SIZING

D Q
D Q

Figure 4.2: The example logic-level netlist used as a running example.

satisfies timing constraints. The result of this pass is quantified by the incremental static
timing analysis (iSTA) step that follows. If power has not changed by more than 0.1%
for three consecutive iterations the optimization moves to the recovery step. Otherwise,
the program flow moves back to FP. This condition is checked by the convergence check
task. In parallel, the backward pass (BP) updates the timing criticality of each gate using
the updated timing information of iSTA.

The iterative recovery process begins only after the main optimization has converged.
The goal of recovery is twofold: to correct the small remaining timing violations and
recover power from gates with positive timing slack. To avoid disturbing the already
optimized netlist, recovery executes carefully selected resizings with maximum timing
accuracy at each step. State-of-the-art optimizers [47, 143] guarantee maximum timing
accuracy by touching serially one gate at a time and updating timing globally after every
update. In this work, we avoid serial execution and execute recovery in a conservatively-
parallel way that allows for equivalent power savings but with significantly lower run-
time. If timing or power improves, the recovery is repeated until all timing violations
are solved and power stops changing. To assess timing improvement at the end of this
recovery step a full incremental timing update takes place.

4.4 Initial sizing

The purpose of the initial sizing is to solve any load and slew violation from the begin-
ning. In this way, it is easier for the main optimization loop that follows to preserve this
property without introducing new violations.

81

4 TASK-BASED PARALLEL PROGRAMMING FOR GATE SIZING

Start

1st phase

minsize(10)

minsize(4)

minsize(5)

minsize(6)

minsize(7)

minsize(8)

minsize(9)

minsize(11)

minsize(12)

1st phase

Start
Reverse

2nd phase

1

3

2

End
Reverse

sol(12) sol(10) sol(4)

sol(11) sol(8)

sol(9) sol(7)

sol(6)

sol(5)

14

13

sol: solve_violations task

End

Figure 4.3: The task graph of initial sizing is organized in two phases: In the first phase
all cells are downsized in parallel. In the second phase the load and slew
violations are removed by visiting gates in reverse topological order.

To implement initial sizing we map its operation to a specific task graph that is or-
ganized in two parts. In the first part all gates are downsized in parallel to their lowest
size (and lowest leakage). In the second part, the gates are visited in reverse topological
order to check and solve if the load and the slew constraints are violated. The first part
does not involve any dependencies across tasks, while in the second part the execution
of tasks follows the connectivity of the logic-level netlist in reverse order.

The task graph for initial sizing that corresponds to the design of Figure 4.2 is de-
picted in Figure 4.3 and built using Algorithm 6. The first phase contains one task for
each gate or flip-flop of the design without dependencies between them. In the second
phase, there are tasks which represent primary inputs (PIs) and outputs (POs), D-pins
of the flip-flops, gates as well as flip-flops (FFs). From these tasks, only the tasks that
represent gates and flip-flops are assigned with work. Pseudo-tasks are created to help
in dependency propagation. Such tasks are represented with grey-colored circles. De-
pendencies guarantee that each task is executed after the tasks of its fanouts in logic
level. Introducing separate tasks for the D and clock/Q pins of the flip-flops breaks any
possible sequential loop of the design thus resulting in acyclic task graphs.

The work executed at each task solve violations is described in Algorithm 7. For
each gate that is already at its minimum leakage size, we check whether the gate can
drive its output load without introducing slew violations. The output slew is computed
directly from the output slew lookup tables of the library using the already known output
load and assuming the maximum-allowed slew for the inputs. If a load or a slew viola-
tion still exists the size of the gate is gradually increased until violations are removed. If
none of the available sizes can solve the slew or load violations, only logic restructuring

82

4.4 INITIAL SIZING

can fix them (e.g., by adding buffers); but this problem does not occur on the ISPD 2013
benchmarks.

Algorithm 6: Create Task Graph for Initial Sizing
1 create task(“Start”);create task(“End”); //1st phase
2 foreach gin{Gates ∪ FFs} do
3 create task(g); task(g).assign work(minsize(g));
4 task(“Start”).precede(task(g));
5 task(g).precede(task(“End”));
6 end
7 create task(“Start-Reverse”); // 2nd phase
8 foreach po in {POs ∪ D-pins} do
9 create task(po); task(“Start-Reverse”).precede(task(po));

10 end
11 create task(“End-Reverse”);
12 foreach pi in {PIs} do
13 create task(pi); task(pi).precede(task(“End-Reverse”));
14 end
15 foreach gin{Gates ∪ FFs} do
16 create task(g); task(g).assign work(sol(g));
17 end
18 foreach i in {Gates∪PIs∪FFs} do
19 foreach f in { fanouts of i } do
20 task(f).precede(task(i));
21 end
22 end
23 task(“End”).precede(task(“Start-Reverse”));

Algorithm 7: solve violations(gate g)

1 sizes←{equivalent sizes of g from cell library};
2 sizes sort←{sort sizes in ascending power order};
3 i← 0;
4 while violates load(g) or violates slew(g) do
5 i++; resize g to sizes sort[i];
6 end

83

4 TASK-BASED PARALLEL PROGRAMMING FOR GATE SIZING

4.5 Main gate sizing optimization

Design optimization targets the minimization of the total leakage power without violat-
ing any timing constraints:

minimize: ∑
∀gate i

leakagei (4.1)

subject to: ai +di j ≤ a j, for each timing arc i→ j

ak ≤ rk, for each endpoint k

Variable ai is the arrival time at pin i while rk is the required arrival time at a primary
output or a D-pin of a flip-flop k. di j is the delay of the timing arc i→ j that consists of
the wire delay from the output pin of gate i to the input pin of gate j plus the cell delay
of gate j.

Lagrangian Relaxation associates a non-negative weight λi j, called Lagrange Mul-
tiplier (LM), to each constraint [20]. These weights act as penalty factors whenever
the corresponding timing constraints are not met. Incorporating the constraints in the
objective function transforms the problem to the following unconstrained one:

minimize: ∑
∀gate i

leakagei + ∑
∀arc i→ j

(ai +di j−a j)λi j + ∑
∀endpoint k

(ak− rk)λk (4.2)

Differentiating (4.2) with respect to arrival times, according to the Karush-Kuhn-
Tucker (KKT) optimality conditions [109, 118], we end up with the following LM con-
servation rule.

∑
∀fanin iof j

λi j = ∑
∀fanoutk of j

λ jk (4.3)

Equation (4.3) implies that the sum of the LMs of the arcs ending to a gate is equal to
the sum of the LMs of the arcs starting from this gate. For example, the LM flow for
gate 7 of Figure 4.2 implies that λ17 +λ67 = λ78 +λ79 +λ710. Replacing the equality
condition of (4.3) to (4.2) simplifies the problem to:

minimize: ∑
∀gate i

leakagei + ∑
∀arc i→ j

λi jdi j (4.4)

4.5.1 Forward Pass

State-of-the-art LR-based optimizers try to minimize cost function (4.4) using many
iterations of gate resizing and VT reassignment steps. At each iteration implemented by
FP all gates are visited in topological order and for each gate the best size is selected
assuming constant LMs.

84

4.5 MAIN GATE SIZING OPTIMIZATION

1

End

3

2

Start

rsz(6)

rsz(5)

rsz(11)
rsz(7)

rsz(8)

rsz(9)

rsz(10) rsz(12)rsz(4)

MEE

MEE

rsz: resize task

14

13

Figure 4.4: In the forward task graph, the gates are visited in topological order to find
new size. Apart from the logic-level dependencies (black color), the MEEs
(colored green) of [143] are added to prevent the simultaneous sizing of
gates driven by the same driver, e.g. gates 8, 9 and 10.

FP Task graph

FP uses a task graph different from the one used for initial sizing. The task graph
of FP that corresponds to the example of Figure 4.2 is shown in Figure 4.4 and built
using Algorithm 8. Primary inputs, primary outputs, and the D-pins of the flip flops
are assigned to pseudo-tasks (grey circles). A task implementing the resize function of
Algorithm 9 is assigned to each gate and flip-flop of the design (line 9 in Algorithm 8).
The dependencies across tasks follow the forward topological order of the logic-level
netlist. After “Start” the pseudo-tasks of the primary input pins are visited first, while
the rest dependencies follow the netlist connectivity which implies that the task of a gate
precedes the tasks of its fanouts (line 14 in Algorithm 8).

According to [143] the tasks that correspond to gates that have a common fanin gate
cannot execute in parallel using different threads. If their sizing is done in parallel each
gate would estimate the delay change of their common fanin differently thus possibly
leading to wrong sizing decisions. Also, when one of them is sized without knowing the
size of the other, since it is changing in parallel, it may violate the maximum allowed
capacitance of their common fanin gate. To solve this problem, the tasks that corre-
spond to gates with a common driver should be executed serially. To impose this serial
execution additional dependencies are added (lines 15–18 in Algorithm 8), called mu-
tual exclusion edges (MEE). For instance in Figure 4.2, gate 7 drives gates 8, 9 and 10.
Therefore, besides the normal dependencies 7→ 8, 7→ 9 and 7→ 10 that arise from
the forward topological order of the netlist in Figure 4.4, two extra MEE dependencies
are added between the tasks 8, 9, 10 to serialize their execution.

85

4 TASK-BASED PARALLEL PROGRAMMING FOR GATE SIZING

Algorithm 8: Create Task Graph for Forward Pass

1 create task(“Start”); create task(“End”);
2 foreach pi in {PIs} do
3 create task(pi); task(“Start”).precede(task(pi));
4 end
5 foreach po in {POs ∪ D-pins} do
6 create task(po); task(po).precede(task(“End”));
7 end
8 foreach g in {Gates∪FFs} do
9 create task(g); task(g).assign work(rsz(g));

10 end
11 foreach i of {Gates∪PIs∪FFs} do
12 fi←{fanouts of i in topological order} ;
13 foreach f in fi do
14 task(i).precede(task(f));
15 next f ←{the fanout next of f in fi};
16 ifdependency f→next f doesn’texist then
17 task(f).precede(task(next f)); // MEE
18 end
19 end
20 end

To decide to which pair of tasks we should add an MEE edge we consider the follow-
ing rule.

An edge u→ v is added between tasks u and v if:

(a): Tasks u and v correspond to gates that have the same driver in the logic level
netlist;

(b): u is visited before v in the forward topological ordering of the netlist.

In this way, the corresponding tasks are executed serially and cyclic dependencies are
avoided since an MEE is always a “forward” edge with respect to the topological order.

The task executed per gate

According to Algorithm 9, task resize stores first the current size of the gate and com-
putes its local total negative slack (TNS). Local TNS corresponds to the negative slack

86

4.5 MAIN GATE SIZING OPTIMIZATION

Algorithm 9: resize(gate g)

1 min cost← inf ;
2 best size← size(g) ;
3 init slack← local TNS(g) ;
4 trial sizes← get available sizes(g) ;
5 foreach size s of trial sizes do
6 resize g to s ;
7 if violates load(g) or violates slew(g) then
8 reject s ;
9 end

10 local timing update(g);
11 if local TNS(g) < γ · init slack then
12 reject s ;
13 end
14 cost← leakageg +∑i→ j around g λi jdi j;
15 if (cost < min cost) then
16 min cost← cost;
17 best size← s;
18 end
19 end
20 resize g to best size ;
21 local timing update(g);

at the output pin of the examined gate and the negative slacks at the output pins of its
driving gates. Then, the cell resizing loop examines all available trial sizes and selects
the one that minimizes the local cost function (4.4), without introducing load violations
and without degrading the local TNS over a threshold γ [47,151]. To compute the value
of γ we use the same approach proposed in [47]: γ=−min(0,WNS)/T +1, where WNS
is the worst negative slack of the design and T is the clock period. In this way, γ changes
as the optimization evolves. The idea is to allow the local TNS to degrade a little bit
for better solution space exploration, but at the same time to keep the local TNS under
control. In the first few iterations, γ has a large value to allow the local TNS to have
large degradation; and as timing improves, γ allows only fine-grained changes that do
not disturb the already optimized design.

The local cost is calculated as the summation of the leakage power of the new size
and the neighbor arc delays multiplied by their corresponding LMs. The neighbors of

87

4 TASK-BASED PARALLEL PROGRAMMING FOR GATE SIZING

High VT

Higher leakage power

Width

proportional to

Typ. VT

Low VT
current size

Figure 4.5: The search window is centered around the current gate size and its width
changes dynamically in proportion to the gate’s slack divided by WNS. The
width of the search window cannot reduce below three sizes per threshold.

a gate are the ones connected at its fanin and fanout, including also the side gates, i.e.,
those that share a driver with the resized gate. For instance, for gate 9 in Figure 4.2 the
following arcs are involved in the local cost: its input arc (7→ 9), the arcs of fanin (1
→ 7, 6→ 7), the arcs of fanout (9→ 11, 8→ 11) and the input arc of gates 8 and 10 (3
→ 8, 7→ 8, 7→ 10, 4→ 10).

In the baseline case, the available set of trial sizes examined per gate includes all
possible alternatives. Also, during local timing update all neighbor arc delays are ex-
amined. In an effort to tradeoff runtime with QoR, we present two new approaches that
can dynamically narrow down the set of trial sizes and examined timing arcs. Those
heuristics are only selectively enabled and are not part of the baseline execution flow of
gate sizing.

Reduce Trial Sizes (RTS)

Based on the timing slack of each examined gate, we are not obliged to examine all
available sizes for each gate. For instance, Sharma et al. in [143] observed that by
trying all available sizes during the first five iterations of the main optimization loop and
using only a subset of them for the rest iterations, is enough to accelerate gate sizing
with good final QoR.

In this work, the set of sizes that need to be examined are dynamically decided at each
iteration and separately per gate. The smallest set of available sizes corresponds to three
sizes for each VT , i.e., the currently selected size and the immediately smaller and larger
gate size, times the number of available thresholds (nine in total for the benchmarks used
in the experimental results). On the contrary, the largest set corresponds to all available

88

4.5 MAIN GATE SIZING OPTIMIZATION

sizes per VT and all available thresholds (thirty sizes for the examined benchmarks). In
all cases, the examined set of available sizes lies between those two extremes. How
large is the search space depends on the negative slack of the output of the each gate:
the more timing critical a gate is, the more options are tried to solve its violation fast.

If a gate has positive slack only the minimum of three sizes per VT is tried. If the slack
s is negative, the width of the search window centered around the currently selected size
grows according to the ratio of s

WNS , as highlighted in Figure 4.5. Put formally the width

W of the window shown in Figure 4.5 equals W = 1+max(2,#sizes× min(0,s)
WNS).

Fast Local Timing Update (FLTU)

The local timing update calculates the new arc delays and the slews of the gates which
are immediately affected after modifying a gate’s size. The computed delays are used
for computing the local cost function and the local TNS in Algorithm 9. To speedup
this process, we dynamically alter which timing arcs are actually updated. We aim at
skipping the update of timing arcs that are associated with relatively small LMs and do
not affect the overall local cost. The proposed approach is detailed in Algorithm 10.

Initially, the sum of the delays of the neighboring timing arcs multiplied with their
corresponding LMs is computed, which is similar to the local version of Equation (4.4)
except of the leakage power term. For each neighbor, the real contribution of each
timing arc is computed as the ratio of the arc’s delay multiplied with the corresponding
LM to the ∑λi jdi j of all neighboring arcs. When at least one of the neighbor’s arcs
contributes more than the threshold, the corresponding neighbor gate is not skipped.
The threshold is set to α · (1/#neigh arcs) where α is a non-negative weight that takes
any value in between 0 and 1 and alters the number and which of the neighbors are
skipped. For α = 0, all the neighboring arcs contribute more than the threshold and
thus, all neighbors are updated. On the contrary, for α = 1 the threshold allows each
arc to contribute equally to the threshold. In our experiments α = 0.5 was used, as it
minimally impacts the leakage power and provides good runtime savings.

Although a neighbor is ignored, its stale arc delays are still taking part in the local
cost. If the local TNS of the examined gate is negative, all neighbors are updated to
avoid timing oscillations.

The set of neighboring gates that need local timing update are not statically deter-
mined but they are dynamically re-defined for each gate in every iteration. The example
in Figure 4.6 illustrates which gates in the neighborhood of gate 9 are skipped during
local timing update as the optimization evolves. In every iteration, the criticality of each
arc of the neighboring gates (gates 7, 8, 9, 10, 11) is compared to the threshold in which
a = 1 for simplicity. During the third iteration, the criticality of both arcs of neighbor 10
are less than the threshold and thus gate 10 is skipped. In the next iterations, the same

89

4 TASK-BASED PARALLEL PROGRAMMING FOR GATE SIZING

Algorithm 10: local timing update(gate g)

1 sum← 0, neigh arcs← 0, upd gates←{} ;
2 foreach gate j in get neighbors(g) do
3 foreach input arc i→ j do
4 sum← sum+λi jdi j; neigh arcs++ ;
5 end
6 end
7 crit thres← α · (1/neigh arcs) ;
8 foreach gate j in get neighbors(g) do
9 foreach input arc i→ j do

10 crit← λi jdi j/sum ;
11 if crit > crit thres then
12 upd gates← upd gates∪ j ;
13 end
14 end
15 end
16 if fast local STA disabled or local TNS(g) < 0 then
17 upd gates← get neighbors(g);
18 end
19 foreach gate j of upd gates in topological order do
20 update slews and arrival times(j) ;
21 end
22 foreach gate j of upd gates in reverse topological order do
23 update required times and slacks(j) ;
24 end

checks are performed for each arc thus possibly skipping gates 8 and 10 in the fourth
and the fifth iteration, respectively.

4.5.2 Backward pass

Backward pass is responsible for updating the timing criticality of each timing arc of the
design by properly updating the values of the LMs. Figure 4.7 depicts the task graph of
the backward pass for the same running example. The task graph in this case includes
one task for each gate, primary output and D-pin of each flip-flop, connected in reverse
topological order. The task graph of the backward pass follows the same structure as the
second part of the task graph of initial sizing. Therefore, to build the task graph of the

90

4.5 MAIN GATE SIZING OPTIMIZATION

skip
gate

D Q

Iteration 4 Iteration 5 Iteration 6

D QD Q

Iteration 3

 D Q

examined
gate

skipped in

local timing

update

Figure 4.6: Since the criticality of timing arcs 7→ 10 and 4→ 10 of gate 10 are less
than the threshold, gate 10 can be removed from the neighbors of gate 9
that participate in local timing update. This decision is dynamic and the
neighbors skipped in the next iterations is re-evaluated.

backward pass, we can follow the lines 7–22 of Algorithm 6 and assign the backward
function to each task that corresponds to a gate, flip-flop, primary output, or D-pin of a
flip-flop.

During the backward pass there are no netlist changes. Thus, we can omit the addition
of the MEEs which chain the fanout gates. If they were included, they would degrade
the parallel performance of the backward step because they would enforce more serial-
ization on the execution of the tasks.

The operation of LM update executed in the backward pass is described in Algorithm
11. The LMs of the input arcs are updated to reflect the timing changes due to the
re-sizings of the forward pass. The LMs act as penalty factors and their values should

91

4 TASK-BASED PARALLEL PROGRAMMING FOR GATE SIZING

1

3

2
bw(6)

bw(5)

bw(11) bw(7)

bw(8)

bw(9)

bw(10)bw(12) bw(4)

End
Reverse

bw(13)

bw(14)

bw: backward task

Start
Reverse

Figure 4.7: In the backward graph the tasks are visited in reverse topological order.

reflect if the timing constraints are met or not. The LMs are updated using the approach
proposed in [143]. Di j is the worst path delay that passes through timing arc i→ j
and T indicates the clock period target. Therefore, for a timing arc with negative slack
Di j > T and thus the LM increases to reflect the violation of the timing constraint. On
the other hand, when Di j < T makes Di j

T < 1 and decreases λi j. The exponent K is
used to speedup LM increments and reductions and its value is also adopted from [143].
Initially, the design has multiple timing violations and therefore the exponent for the
critical arcs is set to 1 and for the non-critical arcs to 0.25. Once, the TNS becomes
less than 20% of the clock target and the majority of the timing violations have been
resolved, K=4 is used for the positive arcs because the respective LMs need reduction
with higher rate in order to save power.

Algorithm 11: backward(gate j)

1 foreach input arc i→ j do // LM update

2 λ
upd
i j = λi j

(
Di j
T

)K

3 end
4 foreach input arc i→ j do // LM scale

5 λi j =
λ

upd
i j

∑∀m→ j λ
upd
m j

(
∑∀ j→k λ jk

)
6 end

Once the LMs of the input arcs are updated, they have to be scaled to respect the KKT
condition of (4.3). The sum of the LMs of the output arcs must be equal to the sum of
its input arcs LMs. To achieve this, each input LM gets a percentage of the sum of the

92

4.6 TIMING AND POWER RECOVERY

output LMs that is proportional to its updated value. For example, for the timing arc 6
→ 7 of gate 7 (Figure 4.2) it is λ67 =

(
λ

upd
67 /(λ

upd
17 +λ

upd
67)

)
· (λ78 +λ79 +λ710).

4.6 Timing and Power Recovery

The recovery step aims at identifying and optimizing the gates that were kept in an un-
optimized state after main sizing optimization. For instance, it deals with gates that have
negative slack or have remained to a high-leakage size but have positive slack to spend.
This recovery step is common in many optimization algorithms and especially in those
that rely on Langrangian relaxation [47, 143, 151]. In recovery, a small number of new
sizes are tried per gate, each one followed by a complete incremental timing propagation
to accurately reflect the timing of the affected paths. To keep the timing picture of the
design as accurate as possible after each resizing, state-of-the-art sizers execute this step
serially using a single thread that operates at one gate at a time.

In this work, to accelerate the execution of the recovery step, we propose its parallel
execution by allowing multiple gates to be sized in parallel but in a more conservative
way. The task graph used for the recovery step is derived from the task graph of FP
after adding extra dependency edges called timing safety edges (TSEs) and replacing
the function for each task to recover implemented in Algorithm 13. The addition of
TSEs increases timing safety by imposing the recovery task for a gate to execute not
only before its fanout but also before the fanout of its side gates.

A TSE is added between tasks u and v on top of the task graph of FP when:

(a): Task u corresponds to a gate that one of its side gates is a fanin of the gate that
corresponds to task v and

(b): u is visited before v in the forward topological ordering of the netlist thus avoiding
any cyclic dependencies.

The addition of TSEs on top of the task graph of the forward pass is implemented by
Algorithm 12.

The forward graph for the recovery step of the example in Figure 4.2 is depicted in
Figure 4.8. Gates 8, 9 and 10 share the driver 7 and thus, they are side gates. The task
of gate 8 needs to add two TSE dependencies towards the tasks of the fanouts of its
side gates 9 and 10, i.e. 11 and 12. But gate 11 is also fanout of gate 8 and therefore a
logic-level dependency already exists between them. Therefore, as shown in Figure 4.8,
only one TSE dependency is added from the task of gate 8 towards 12. Similarly, the
TSE dependencies from task 9 towards 12 and from task 10 towards 11 are added. Even
though TSEs enforce more serial execution, they are essential for the timing accuracy

93

4 TASK-BASED PARALLEL PROGRAMMING FOR GATE SIZING

Start

1

3

2
rec(6)

rec(5)

rec(11)
rec(7)

rec(8)

rec(9)

rec(10)

End

14

13

rec(12)rec(4)

MEE

MEE

TSE
TSE

rec: recover task

Figure 4.8: The recovery task graph is built on top of the task graph of FP. TSE depen-
dencies are added to eliminate timing inaccuracies. The TSE are added from
a gate towards the fanouts of its side gates.

needed by the resizings of this step. For instance, assume the case of tasks 10 and 11 in
Figure 4.8. If they were not connected by a TSE it means that they could have executed
recovery in parallel. If this was allowed, each task would have affected differently the
timing of gate 9 since the latter is a side gate for 10 and a fanin gate for 11. Since the
delay of gate 9 affects the local TNS of both gates 10 and 11, resizing them in parallel
would have been highly inaccurate for the sensitive recovery step.

Please notice that this inaccuracy in timing does not affect the convergence of the
main optimization loop. The main optimization loop is an iterative process that relies
on the minimization of the sum of the arc delays multiplied with their corresponding
LMs (cost function (4.4)). The LMs are updated gradually during every BP and thus

Algorithm 12: Add Timing Safety Edges

1 foreach g in {Gates} do
2 sides←{side gates of g};
3 sides f ←{fanouts of sides};
4 foreach f of sides f do
5 if g seen before f in topological order and dependency g→ f doesn’t

exist then
6 task(g).precede(task(f));
7 end
8 end
9 end

94

4.6 TIMING AND POWER RECOVERY

Algorithm 13: recover(gate g)

1 if local T NS(g)> 0 then // Power recovery
2 resize g to {next increased VT size of g’s initial size};
3 if reject size(g) then
4 resize g to {next smaller size of g’s initial size};
5 if reject size(g) then
6 resize g to it’s initial size;
7 end
8 end
9 else // Timing recovery

10 resize g to {next bigger size of g’s initial size};
11 if reject size(g) then
12 resize g to it’s initial size;
13 end
14 end

keep historic information with respect to the criticality of the corresponding timing arc.
For instance, an arc that was critical for multiple iterations it keeps a high value even if
its timing is improved. Therefore, the LMs work as safeguard and any wrong decision
due to timing inaccuracy, is fixed in the next iteration.

In contrast, in the recovery step the optimization does not depend on a joined product
with LMs, but the local decisions are strictly based on the actual slacks as returned from
the timer. Therefore, even the small timing inaccuracies which can harm the conver-
gence of the recovery, must be avoided.

The assigned work to the tasks in the recovery step is described in Algorithm 13. For
each visited gate, at first the local TNS is computed and its sign defines whether the
gate is sized to save power or to solve timing violations. Therefore, a gate with positive
local TNS performs power recovery while a gate with timing violations performs timing
recovery.

For power reduction, only two sizes are tried one after the other; the next VT and the
smaller size. After each resize, the timing is updated locally considering all the neigh-
boring gates. The first option that does not violate the design rules and does not degrade
the local TNS, is kept. For timing reduction, the gate is sized only to the next bigger
size to improve timing. If this size creates any violation of the design rule constraints or
after a local timing update it worsens the local TNS, the gate is resized back to its initial
size.

95

4 TASK-BASED PARALLEL PROGRAMMING FOR GATE SIZING

4.7 Experimental Results

The proposed approach was implemented in C++ using the RSyn framework [45] that
provides the essential functions for netlist traversal and update as well as timing analysis.
The creation and the execution of task graphs was performed with Taskflow [71]. All
experiments ran on the same CentOS workstation equiped with 128 GB RAM and two
Intel Xeon Silver 4214 @ 2.20GHz CPUs with twelve 2-way multithreaded processors
each. In all cases, we used the benchmarks of the ISPD 2013 contest [116] and the final
timing results are validated with OpenTimer [69]. The final results obtained from the
proposed approach meet all the timing, as well as, the load and slew constraints.

4.7.1 The characteristics of the tasks graphs

Before comparing the proposed approach to the state-of-the-art, it would be useful to
examine the characteristics of the ISPD13 benchmarks used in the evaluation and how
they affect the size and structure of the corresponding task graphs. The characteristics
of the task graph depend solely on the structural properties of each design and not on
the timing constraints (’slow’ or ’fast’) associated with each benchmark.

Table 4.1 presents the number of gates of each design together with the properties
of each task graph in each case. The number of nodes for all types of tasks graphs
are linearly dependent on the number of gates and flip-flops of the design as well as
on the number of primary inputs and outputs. The number of simple edges follows the
connectivity of the netlist of each design being linearly dependent on the number of
design’s nets. On the contrary, the MEEs and TSEs added in the fordward pass and in
recovery, respectively, depend on the fanout of certain nets of the design. The higher the
fanout per net, the more the MEEs and TSEs added.

TSEs are used to maximize timing safety by imposing a more restrictive execution
order to certain tasks of the recovery phase. In all cases, the number of TSEs exceed
by far the number of simple edges and MEEs. We expect this characteristic to translate
to less structural parallelism in the recovery task graph relative to the task graph of the
forward pass.

4.7.2 Comparison with state-of-the-art

Initially, we would like to compare the proposed task-based approach with state-of-the-
art gate sizers [47] and [143]. The leakage power of state-of-the-art methods are the
final results reported in [47, 143] after finishing both main sizing optimization and their
corresponding timing/power recovery steps. The runtimes reported [47, 143] are taken
verbatim from the respective papers.

96

4.7 EXPERIMENTAL RESULTS

Table 4.1: The size of the designs and the properties of the corresponding task graphs
(in thousands).

Designs Gates
Task

Graph
Properties

Initial
Sizing

Forward
Pass

Backward
Pass

Recovery

usb phy 0.6

Nodes 1.4 0.7 0.7 0.7
Edges 2.5 1.3 1.3 1.3
MEEs - 0.4 - 0.4
TSEs - - - 2.7

pci bridge32 30.8

Nodes 64.9 34.3 34.3 34.3
Edges 122.0 60.8 60.8 60.8
MEEs - 21.8 - 21.8
TSEs - - - 245.8

fft 33.8

Nodes 70.5 37.8 37.8 37.8
Edges 142.1 76.6 76.6 76.6
MEEs - 27.1 - 27.1
TSEs - - - 181.6

cordic 42.9

Nodes 87.1 44.2 44.2 44.2
Edges 167.3 81.5 81.5 81.5
MEEs - 28.9 - 28.9
TSEs - - - 235.9

des perf 113.3

Nodes 235.4 122.3 122.3 122.3
Edges 442.1 215.9 215.9 215.9
MEEs - 80.2 - 80.2
TSEs - - - 604.9

edit dist 129.2

Nodes 261.6 134.9 134.9 134.9
Edges 506.9 252.6 252.6 252.6
MEEs - 95.0 - 95.0
TSEs - - - 732.3

matrix mult 159.6

Nodes 320.6 164.1 164.1 164.1
Edges 620.9 301.2 301.2 301.2
MEEs - 110.9 - 110.9
TSEs - - - 775.6

netcard 984.1

Nodes 2064.2 1081.9 1081.9 1081.9
Edges 3952.5 1987.9 1987.9 1987.9
MEEs - 761.9 - 761.9
TSEs - - - 10785.5

The runtime results of [47] correspond to single-thread implementations run on an
Intel i7-3770 @ 3.40GH, while the runtime results of [143] refer to a mixed multi-
threaded and single-thread implementation executed on a system with two quad-core
Intel Xeon E3-1240 v5 @ 3.50GHz CPUs and 16GBs of memory. In [143] the main

97

4 TASK-BASED PARALLEL PROGRAMMING FOR GATE SIZING

Table 4.2: The leakage power and runtime of [47] compared to the proposed task-based
gate sizing.

Design
Leakage Power (W) Runtime (min)

Speedup
[47]

Ours
1 thread

[47]
Ours

1 thread

usb phy slow 0.001 0.001 0.49 0.04 12.25
usb phy fast 0.002 0.002 0.42 0.09 4.67

pci bridge32 slow 0.057 0.058 10.53 3.39 3.11
pci bridge32 fast 0.085 0.096 22.62 7.06 3.20

fft slow 0.087 0.088 25.71 6.74 3.81
fft fast 0.194 0.214 40.43 12.50 3.23

cordic slow 0.271 0.292 69.04 19.70 3.50
cordic fast 1.001 1.013 117.08 30.14 3.88

des perf slow 0.330 0.342 132.27 23.20 5.70
des perf fast 0.649 0.654 347.87 35.94 9.68
edit dist slow 0.425 0.451 123.90 21.60 5.74
edit dist fast 0.540 0.571 352.96 36.34 9.71

matrix mult slow 0.444 0.469 226.13 38.04 5.94
matrix mult fast 1.611 1.673 395.96 60.54 6.54

netcard slow 5.155 5.156 483.55 106.22 4.55
netcard fast 5.200 5.202 400.89 148.56 2.70

Total 16.050 16.280 2749.85 550.10 -
Geomean 0.220 0.230 57.53 11.57 4.97

optimization step was executed using 8-threads described with OpenMP and the initial
sizing as well as the final recovery step ran serially using only one thread. In both [47,
143], the final recovery step is executed on purpose on a single thread to guarantee the
maximum timing accuracy.

Table 4.2 highlights the performance of [47] relative to the baseline task-based for-
mulation of the gate sizing problem, without enabling RTS or FLTU that dynamically
reduce sizing alternatives and speedup local timing updates. All steps of the proposed
gate sizer were also executed on a single thread. The proposed flow achieves similar
leakage power results and significant runtime savings when compared to [47]. For in-
stance, the single-threaded execution of the proposed approach achieves 4.97× speedup
at the cost of 5% higher leakage power as reported by the geometric mean average of
leakage power and speedup per benchmark, respectively. Geometric mean average is
used to facilitate data averaging with a wide range in values. The reduced execution
time of the proposed approach is a result of the smaller number of iterations of the

98

4.7 EXPERIMENTAL RESULTS

Table 4.3: The leakage power and runtime of [143] compared to the proposed task-based
gate sizing.

Designs

Leakage Power (W) Runtime (min)

[143]
Ours [143] Ours - Base Ours with RTS enabled

Base w. RTS Orig. Trimmed 8 thr. 24 thr. 8 thr.
Speedup

vs
Trimmed

24 thr.
Speedup

vs
Trimmed

usb phy slow 0.001 0.001 0.001 0.22 0.05 0.01 0.01 0.01 5.00 0.01 5.00
usb phy fast 0.002 0.002 0.002 0.23 0.06 0.02 0.05 0.01 6.00 0.01 6.00

pci bridge32 slow 0.058 0.058 0.058 0.97 0.40 0.55 0.27 0.37 1.08 0.22 1.82
pci bridge32 fast 0.090 0.095 0.100 1.54 0.97 1.21 0.53 0.79 1.23 0.40 2.43

fft slow 0.088 0.087 0.089 1.37 0.73 1.20 0.59 0.73 1.00 0.42 1.74
fft fast 0.213 0.219 0.230 1.64 1.01 1.51 0.92 1.06 0.95 0.70 1.44

cordic slow 0.293 0.299 0.338 2.29 1.56 2.62 1.48 1.62 0.96 1.02 1.53
cordic fast 1.080 1.025 1.100 5.60 4.88 4.77 2.21 2.92 1.67 1.46 3.34

des perf slow 0.332 0.339 0.348 7.27 5.82 3.59 1.73 2.56 2.27 1.37 4.25
des perf fast 0.639 0.653 0.657 26.16 24.70 5.83 2.33 4.31 5.73 1.71 14.44
edit dist slow 0.440 0.451 0.453 4.92 3.15 3.49 1.74 2.24 1.41 1.30 2.42
edit dist fast 0.549 0.573 0.587 6.66 4.90 5.99 2.73 4.07 1.20 2.23 2.20

matrix mult slow 0.448 0.468 0.475 8.80 6.76 7.76 3.26 4.51 1.50 2.64 2.56
matrix mult fast 1.633 1.672 1.680 13.94 11.82 10.97 5.10 6.12 1.93 2.83 4.18

netcard slow 5.170 5.156 5.155 24.67 12.43 18.91 9.78 11.29 1.10 7.74 1.61
netcard fast 5.205 5.202 5.200 30.60 18.36 24.81 12.10 13.79 1.33 8.93 2.06

Total 16.241 16.300 16.473 136.88 97.60 93.24 44.83 56.40 - 32.99 -
Geomean 0.230 0.233 0.239 3.70 2.18 1.97 1.10 1.27 1.72 0.76 2.86

main optimization step and the replacement of the full-incremental timing update in the
recovery step of [47] with a local timing update.

Similarly, Table 4.3 compares the proposed approach relative to the results reported
in [143] for an eight-thread execution. For the proposed sizer we consider the baseline
approach that allows each task to examine all possible gate sizes and the one that enables
RTS. RTS alters dynamically the number of sizes that are tried for each gate based on
the gate’s timing slack. Restricting the search space may slow down the convergence
of the main optimization since more iterations are needed to find the most suitable size.
However, each iteration is faster.

The leakage power achieved in each case is depicted in columns 2–4 of Table 4.3.
The two variants of the proposed approach have less than 4% higher leakage power on
average than [143]. As expected, the solutions with RTS enabled have higher leakage
relative to the baseline approach. This holds for all benchmarks except ’netcard’. In this
case, RTS performs marginally better. This result is an artifact caused by multithreading.
Every time we run the same experiment with the same input, the final results can be
slightly different. Nevertheless, the difference observed in all cases is always at the
granularity of the third decimal digit.

The runtime of [143] is shown in columns 5–6 of Table 4.3. Column ‘Orig.’ refers

99

4 TASK-BASED PARALLEL PROGRAMMING FOR GATE SIZING

to the total runtime reported in [143] for each benchmark. This runtime involves also
the time needed for timing-model calibration that is done using an external timer. To
have a fair comparison the overhead of communicating with the external timer should
be removed from the comparisons. According to [143] the useful runtime for timing
calibrations that does not involve TCL and file processing is roughly 20% of the total
runtime spent for timing calibrations. To compute the time that should be removed for
each benchmark, we used the contribution in runtime of timing calibrations reported
in Table V of [143]. The trimmed runtime derived for each benchmark is shown in
column ‘Trimmed’. In benchmarks that timing calibration was a large part of the overall
runtime, the runtime reductions are significant. For instance, for netcard fast the total
runtime reduced from 30.6 to 18.3 minutes.

The runtime of the two variants of the proposed method for 8 and 24 threads and the
speedup achieved relative to the trimmed runtime of [143] are depicted in the last six
columns of Table 4.3. The baseline version of the proposed approach shows a marginal
reduction in the total runtime needed to execute all benchmarks using 8 threads but
improves significantly for 24 threads.

The work of [143], after the first five iterations of the LR sizing loop, examines a
subset of the available sizes for each gate. This has a significant impact on the overall
runtime. Therefore, to have a fair comparison with the proposed work we need to
compare the trimmed runtimes of [143] with the runtimes achieved by the proposed

0

20%

40%

60%

80%

100%

slow fast

usb_phy pci_bridge32 fft cordic des_perf edit_dist matrix_mult netcard

slow fast slow fast slow fast slow fast slow fast slow fast slow fast

Backward pass

Forward pass Incr. STAInitial sizing

Recovery step

Figure 4.9: The breakdown of the total runtime for all benchmarks. The parallel initial
sizing uses the 6% on average of the total runtime. The majority of the time
is consumed in the forward pass of the main optimization step and only 9%
in the single-threaded incremental timing analysis. The backward pass needs
2% on average while the recovery step utilizes the 4% on average.

100

4.7 EXPERIMENTAL RESULTS

method with the RTS heuristic enabled. Under this apple-to-apple comparison, i.e.,
both approaches employ multithreading under an equal number of threads and both
use a heuristic that examines only a subset of the available gate sizes, the proposed
method achieves a mean speedup improvement of 1.72× for eight threads that improves
to 2.86× for 24 threads.

The runtime reduction reported is the combined result of two factors. First, the pro-
posed approach executes in parallel all steps of the optimization including initial siz-
ing, main optimization and final recovery while the method of [143] performs single-
threaded initial sizing and recovery. Also, our thread scheduling is not performed man-
ually, as in [143], but done automatically by Taskflow that allows scaling the gate sizer
smoothly to a higher number of threads.

Figure 4.9 highlights the contribution in runtime of each step of the proposed task-
based parallel gate sizer assuming eight available threads. The FP of the main opti-
mization loop utilizes on overage the 79% of the total runtime while BP takes only 2%
of the total runtime. Initial sizing consumes 6% of the total runtime on average, while
the parallel implementation of the iterative recovery step reduced its runtime contribu-
tion to only 4% on average. Incremental timing analysis accounts for 9% of the total
execution time, on average. In our implementation the incremental timing analysis is
performed using only one thread. Therefore, a multi-threaded implementation of the
timing analysis can further reduce the amount of time consumed by this step.

The scalability of the proposed approach with increasing the number of threads for the
two largest designs matrix mult fast and netcard fast is shown in Figure 4.10. The ex-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 12 16 24 32 40 48
Number of threads

N
o

rm
a

li
z
e

d
 r

u
n

ti
m

e

0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

13.5

15.0

S
p

e
e

d
u

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 12 16 24 32 40 48
Number of threads

N
o

rm
a

li
z
e

d
 r

u
n

ti
m

e

0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

13.5

15.0

S
p

e
e

d
u

p

Figure 4.10: The normalized runtime and speedup of the proposed approach for increas-
ing number of threads for the two largest benchmarks. The runtime de-
creases sufficiently until thread count reaches 24 that matches the amount
of physical CPUs used in this experiment.

101

4 TASK-BASED PARALLEL PROGRAMMING FOR GATE SIZING

N
u

m
b

e
r
 o

f
tr

ie
d

 s
iz

e
s

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iterations

Figure 4.11: The number of sizes that are examined in gate sizing as the optimization
evolves for a specific gate of matrix mult fast design. At first, the gate
has large negative slack and thus all the available sizes are tried. As slack
improves the number of examined sizes is reduced to minimum.

ecution time is normalized to the runtime of the single-thread run. Moving from one to
two threads speeds the execution of matrix mult fast by 1.9× and 1.7× for netcard fast.
Enabling four threads gives an additional speedup of 70% on average for both designs.
Beyond 24 threads, there is little reduction in runtime. This is caused by the dependen-
cies of the task graphs that limit the parallelism that can be achieved and, at the same
time, with 24 threads we reach the maximum number of physical CPUs.

4.7.3 Highlighting the contribution of RTS and FLTU

The results of Table 4.3 have shown the effectiveness of RTS in reducing the overall
runtime. In this section we want to clarify the behavior of RTS and also highlight the
contribution of FLTU that reduces dynamically the number of timing arcs included at
each local timing update.

To clarify the dynamic behavior of RTS, Figure 4.11 depicts the total number of sizes
that are tried in each iteration for a specific gate in matrix mult fast benchmark. In the
first iteration, the gate is part of the most critical path and therefore all the available
sizes are examined. In the next iteration, even though the gates slack and WNS are
improved, the gate remains in the critical path and thus again all sizes are examined. As
the optimization evolves the number of examined sizes decreases because the ratio of
the gates slack to WNS is getting smaller. Once the gate obtains positive slack (iteration
9) the examined sizes are fixed to nine options: three sizes per VT for three available VT .

The combined effect of RTS and FLTU relative to gate sizing with only RTS enabled
is shown in Table 4.4. In all cases, the task graphs are executed using 24 threads. En-
abling FLTU in addition to RTS offers an additional 1.12× speedup on average due to

102

4.7 EXPERIMENTAL RESULTS

Table 4.4: The leakage power and the runtime of the proposed flow with only RTS (RTS)
and with RTS and FLTU (RTS & FLTU) enabled.

Design
Leakage Power (W) Total Runtime (min)

Speedup
RTS

RTS &
RTS

RTS &
FLTU FLTU

usb phy slow 0.001 0.001 0.01 0.01 1.00
usb phy fast 0.002 0.002 0.01 0.01 1.00

pci bridge32 slow 0.058 0.058 0.22 0.19 1.16
pci bridge32 fast 0.100 0.107 0.40 0.36 1.11

fft slow 0.089 0.089 0.42 0.37 1.14
fft fast 0.230 0.235 0.70 0.62 1.13

cordic slow 0.338 0.339 1.02 0.83 1.23
cordic fast 1.100 1.121 1.46 1.29 1.13

des perf slow 0.348 0.349 1.37 1.24 1.10
des perf fast 0.657 0.662 1.71 1.39 1.23
edit dist slow 0.453 0.455 1.30 1.23 1.06
edit dist fast 0.587 0.593 2.23 1.94 1.15

matrix mult slow 0.475 0.480 2.64 2.17 1.22
matrix mult fast 1.680 1.684 2.83 2.41 1.17

netcard slow 5.155 5.156 7.74 7.25 1.07
netcard fast 5.200 5.202 8.93 8.27 1.08

Total 16.473 16.533 32.99 29.58 -
Geomean 0.239 0.241 0.76 0.68 1.12

the simplification of the local timing updates at the cost of less than 1% higher leakage
power.

To understand better the application of FLTU, we show in Figure 4.12 the average
percentage of the neighbors that are updated during the local timing update at each iter-
ation. The design used in this example is edit dist slow. Initially, almost all neighbors
are updated because the design starts with many timing violations distributed across all
paths. During the next two iterations, the timing improvement is sufficient and thus
there are many neighbors for which the timing update locally is not essential. More
specifically, in the third iteration only the 72% of the neighbors are considered for local
timing update. From this point forward more and more neighbor timing arcs stop con-
tributing to the local cost and therefore can be ignored. Similar results are obtained for
all benchmarks.

We should not forget that excluding timing arcs from the local timing update of each
gate inevitably keeps their delay unchanged. When those timing arcs participate in the

103

4 TASK-BASED PARALLEL PROGRAMMING FOR GATE SIZING

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
e
rc

e
n

ta
g

e
 o

f
n

e
ig

h
b

o
rs

in

 l
o

c
a
l
ti

m
in

g
 u

p
d

a
te

Iterations

Figure 4.12: The average percentage of the neighbors which are updated when fast lo-
cal timing update is enabled in edit dist slow. Initially, all neighbors are
considered for update but during the next two iterations, the number of
neighbors considered is significantly reduced.

local cost function with their not-updated (stale) delays may lead to sub-optimal local
gate sizing choices. The effect of such choices, translates to designs with increased
leakage power (2% more leakage is observed relative to the baseline approach).

The criticality threshold is fundamental in the FLTU because it defines how many
and which of the neighbors are skipped from the timing update and therefore can affect
the overall QoR. For example, a low value for the threshold implies that the majority of
the neighbors are updated, while a high value reduces the neighboring gates to update.
As the number of skipped neighbors increases, the runtime reduces but the leakage
is degraded. For this reason, to better understand how the criticality threshold affects
the overall QoR, we modify its value by increasing the weight α that is part of the
threshold. To better evaluate the obtained final results, a loss function is defined which
takes into account both the runtime and the power changes. More specifically, the loss
for a specific α, Lossα, should be considered minimal if the leakage is not appreciably
increased and the runtime is significantly reduced when compared to the corresponding
results obtained with a = 0 i.e. none of the neighbors is skipped.

Lossα =
leakageα

leakage0
· runtimeα

runtime0

The overall loss for increasing the value of weight α in edit dist slow is illustrated
in Figure 4.13. As the weight α increases, the threshold also increases and therefore
less neighbors are considered for the timing update. Until α = 0.7, the overall loss is
lower than with α = 0, because the runtime is reduced and simultaneously the leakage is
marginally increased. For α ≥ 0.8 more neighbors are skipped from the timing update

104

4.7 EXPERIMENTAL RESULTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

L
o
s
s

Weight

Figure 4.13: The loss for different values of weight α in the criticality threshold in
edit dist slow. The minimum loss observed in 0.5. Beyond α = 0.8 the
neighbors which are skipped affect the timing accuracy significantly and
therefore more iterations are needed to converge.

and thus even less loss is expected. However, beyond this point, the increased number
of skipped neighbors affects negatively the timing accuracy. This leads to sub-optimal
solutions with higher leakage power and that causes the gate sizing to run for more it-
erations. The same behavior is observed in all designs. Therefore, in our experiments
α = 0.5 was used, as it minimally impacts the leakage power and provides good runtime
savings.

4.7.4 The contribution of final timing and power recovery

All three methods under comparison are using a Langrangian Relaxation based formula-
tion for the main optimization step that is accompanied by a timing and power recovery
step at the end. This step is crucial in correcting the remaining small timing violations
and recovering part of the excessive leakage power. To enable surgical-accuracy resiz-
ing decisions, the methods of [47, 143] require examinining serially one gate at a time
(from a limited set of gates) and performing a full incremental timing update after each
change. This requirement increases inevitably the runtime of the recovery step and lim-
its the applicability of LR-based gate sizers. This limitation is effectively removed by
the proposed approach.

Table 4.5 reports in columns 2–4 the leakage power at the end of the main optimiza-
tion step for all methods under comparison irrespective of the runtime needed to finish
the main optimization. The results show that more or less all three methods converge to
similar leakage power. If we observe the results more carefully, we see that the method
of [47] or the method of [143] achieve the lowest leakage power after main optimiza-

105

4 TASK-BASED PARALLEL PROGRAMMING FOR GATE SIZING

Table 4.5: Leakage power before recovery and the incremental change of power
(∆Power) after recovery.

Design
Leakage Power (W)

before recovery
∆Power (%)

after recovery
[47] [143] Ours [47] [143] Ours

usb phy slow 0.001 0.001 0.001 0.0 0.0 0.0
usb phy fast 0.002 0.002 0.002 0.0 0.0 0.0

pci bridge32 slow 0.057 0.057 0.058 0.0 1.8 0.0
pci bridge32 fast 0.088 0.088 0.093 -3.4 2.3 2.2

fft slow 0.087 0.088 0.089 0.0 0.0 -2.2
fft fast 0.204 0.209 0.222 -4.9 1.9 -1.4

cordic slow 0.309 0.296 0.303 -12.3 -1.0 -1.3
cordic fast 1.665 1.273 1.289 -39.9 -15.2 -20.5

des perf slow 0.339 0.328 0.336 -2.7 1.2 0.9
des perf fast 0.750 0.648 0.668 -13.5 -1.4 -2.2
edit dist slow 0.429 0.439 0.454 -0.9 0.2 -0.7
edit dist fast 0.573 0.551 0.572 -5.8 -0.4 0.2

matrix mult slow 0.463 0.454 0.485 -4.1 -1.3 -3.5
matrix mult fast 2.032 1.859 1.894 -20.7 -12.2 -11.7

netcard slow 5.117 5.169 5.156 0.7 0.0 0.0
netcard fast 5.148 5.195 5.205 1.0 0.2 -0.1

tion. Therefore, the proposed approach has to recover slightly more leakage power than
the rest.

Also, columns 5–7 of Table 4.5 depict the reduction in leakage power achieved after
recovery (timing is closed in all cases). Even if each method behaves differently during
recovery, the overall trend per design remains the same for all methods. For instance,
in netcard and edit dist the recovery step fails to reduce the leakage power. On the
contrary, the reductions observed in cordic and matrix mult are significant.

Even in cases that didn’t benefit a lot from timing and power recovery, the runtime
spent is not negligible. Figure 4.14 illustrates the percentage of the total runtime con-
sumed by the recovery step in the five largest designs. For each design, we include the
percentage of the single-threaded recovery step of [47, 143] and the percentage of the
proposed conservatively-parallel recovery step executed using 8 threads. The recovery
step in [47] and [143] accounts for the 18% and 27% of the total runtime on average,
respectively. There are cases, such as des perf fast or matrix mult fast for [143], where
“the last mile” optimization represents more than the 50% of the total runtime. On the
contrary, the iterative recovery of the proposed approach performs on average 5 itera-

106

4.7 EXPERIMENTAL RESULTS

20%

40%

60%

80%

100%

cordic des_perf edit_dist matrix_mult netcard
0

[47] with 1 thread Ours with 8 threads[143] with 1 thread

(a): slow timing constraints

20%

40%

60%

80%

100%

cordic des_perf edit_dist matrix_mult netcard
0

[47] with 1 thread Ours with 8 threads[143] with 1 thread

(b): fast timing constraints

Figure 4.14: The percentage of the total runtime utilized by recovery in the five largest
designs under (a) slow and (b) fast timing constraints. Both single-threaded
recovery steps utilize significant part of the total runtime when compared
to the proposed method.

tions and takes 4% of the total runtime. This result stems from the task-based execution
of the recovery step and the extra TSE edges added to the task graph that allow for re-
sizing multiple gates in parallel and preserving the timing accuracy needed in this step.

The scalability of the task-based recovery step with respect to number of active
threads is depicted in Figure 4.15 for matrix mult fast and netcard fast designs. Ini-
tially, the speed up of matrix mult fast scales sufficiently until 16 threads. Then, the
improvement stops. In the main optimization task graph this behavior is observed at 24
threads. The reason is that the recovery is executed on a more constrained task graph
with 3× more dependencies (due to the TSE edges) that limit inevitably the available
parallelism but ensure better timing accuracy after each local timing update. Similarly, at
first the runtime of netcard fast (Figure 4.15(b)) starts improving until 12 threads where
speedup levels off for the same reason. The recovery graph of netcard fast contains 5×
more dependencies and therefore speedup saturates earlier than matrix mult fast.

107

4 TASK-BASED PARALLEL PROGRAMMING FOR GATE SIZING

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 12 16 24 32 40 48
Number of threads

N
o

rm
a

li
z
e

d
 r

u
n

ti
m

e

0

1

2

3

4

5

6

7

8

9

10

S
p

e
e

d
u

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 12 16 24 32 40 48
Number of threads

N
o

rm
a

li
z
e

d
 r

u
n

ti
m

e

0

1

2

3

4

5

6

7

8

9

10

S
p

e
e

d
u

p

Figure 4.15: The normalized runtime and speedup of the proposed recovery step for
the largest benchmarks using different number of threads. TSEs limit the
improvement of speedup at 16 and 12 threads for (a) matrix mult fast and
(b) netcard fast, respectively.

4.7.5 Recovery with Composite Tasks

One extra choice that would possibly improve the runtime behavior of the recovery step
is to allow the resizing of multiple gates in the same trial. To enable this feature, we
should group multiple gates in the same composite task and adjust appropriately the
dependency edges of the restructured recovery task graph. Then, inside each composite
task all choices are examined allowing two or more gates to change size in the same
trial.

To test this feature, we replaced pairs of tasks of the original task graph with compos-
ite tasks of two gates. Two tasks are merged when they both represent timing-critical
gates (with negative slack at their outputs) or gates with enough positive slack (above
50ps) that can be grouped for power recovery. The pairs of tasks that are grouped should
refer to directly connected gates in the netlist and their replacement by a composite task
in the recovery task graph should not create any cyclic dependency. This is achieved by
performing a depth-first search from the composite task after each merge. If there is a
cycle, the merge it is undone, otherwise it is kept.

Inside each composite task, the possible solutions of both gates are enumerated and
visited in ascending order of their cumulative power. The first solution that improves
local TNS (for timing recovery) or does not degrade local TNS (for power reduction)
is selected. The available sizes per gate are the same as the baseline recovery Algo-
rithm 13. However, by allowing the resizing of multiple gates at once, the number of
choices increases exponentially.

108

4.8 CONCLUSIONS

0

20%

40%

60%

80%

100%
w/o composite tasks w. composite tasks

des_perf_fast edit_dist_slow matrix_mult_slow netcard_fast

Figure 4.16: The normalized runtime of the proposed recovery without and with com-
posite tasks for the largest benchmarks at 24 threads.

The obtained results using 24 threads are depicted in Figure 4.16. The runtime of the
recovery improves in all examined cases by 10% on average without affecting negatively
the final leakage power of the design. The number of composite tasks depends on the
timing slack of each gate and ranges between 10k and 24k in the examined designs. In
other words, composite tasks are between 2.5% and 15% of the total number of tasks.

This feature, even if it seems a promising solution, in its current form offers negligible
improvements in the total runtime of gate sizing. Future research work will highlight
what is the best approach to group gates in composite tasks, how to examine fast the in-
creased options per composite task, and how to quantify how the formation of composite
tasks affects the structural parallelism of the baseline recovery task graph.

4.8 Conclusions

Expressing all parts of timing and power optimization, even those that are traditionally
considered as serial operations, as a task-based parallel program allows for scalable
runtime improvements and maximum performance portability. The development of the
task-parallel gate sizer included the selection of the appropriate optimization kernels for
each part of the sizing process and the definition of the dependencies between them. No
effort was spent on managing thread execution. Execution order was constrained by the
introduced dependencies and handled automatically by Taskflow.

Choosing appropriate dependencies between gate resizing tasks enables their execu-
tion with varying levels of timing accuracy. Iterative optimization steps at the beginning
of the design flow can operate with relaxed timing accuracy and enjoy many iterations
with fast runtime. On the other hand, final recovery steps of gate sizing or when gate
sizing is applied at the end of the physical design flow need higher timing accuracy to
still enjoy parallel execution but also not compromise the already achieved QoR.

Additional runtime was saved by speeding up the execution of each task. This was

109

4 TASK-BASED PARALLEL PROGRAMMING FOR GATE SIZING

achieved by enabling the two aditional heuristics proposed in this work that dynamically
alter the number of examined sizes per gate, or reduce the neighbor gates that participate
in local timing update.

110

5 Flip-flop Placement Targeting
Clock-induced OCV

5.1 Introduction

The On-Chip Variation (OCV) effect refers to the intrinsic variability involved in semi-
conductor manufacturing processes and the fluctuation of operating conditions, such as
voltage and temperature, and how they impact a circuit’s timing [34].

Due to OCV, some cells may be faster or slower than expected, thus introducing
delay uncertainties in data and clock path delays, resulting in more stringent timing
constraints. In order to model them, timing derates are introduced that are multiplied
with the net and cell delays [12]. For example, in the case of the clock tree, a launch
clock path can be slower than expected, while a capture clock path can be faster than
expected. In this case, if there is no sufficient positive slack, the increase of clock skew
uncertainties may cause a violation of the late (setup) timing constraints. Nevertheless,
this opposite derating of the launch and the capture clock paths cannot occur on the
part of the clock tree that is common to both paths. The common path should not
be derated since the clock can be either slower or faster for both the launch and capture
paths. Common path pessimism removal discards this artificial pessimism during timing
analysis [12].

Previous research tries to alleviate the impact of OCV either during Clock Tree Syn-
thesis (CTS), or by optimizing already synthesized clock trees. Optimizing the quality
of the top-level clock tree by reducing clock divergence and optimizing placement of
clock logic and buffers was the goal in [17] and [127]. In [119], a statistical center-
ing based clock routing method is proposed that makes the clock skew more tolerant to
interconnect variations. The work of [156] reconstructs the topology of a synthesized
clock tree by reconnecting buffers for removing OCV timing violations, while improv-
ing the lower bounds on the Worst Negative Slack (WNS) and the Total Negative Slack
(TNS).

The work in [136] improves timing in multiple modes and multiple corners by apply-
ing useful clock skew on an already constructed clock tree. A formulation based on lin-
ear programming similar to [99, 128] computes optimal positive or negative clock skew

111

5 FLIP-FLOP PLACEMENT TARGETING CLOCK-INDUCED OCV

offsets that are applied on the clock tree using buffer insertion, removal, or relocation.
Similarly, the work of [58] minimizes the sum of skew variations over all adjacent sink
pairs using both global and local optimization that includes solving a linear program
and utilizing machine learning to predict the impact of local moves on clock latency.
Improving the correlation between the predicted clock skew offsets for tackling OCV
and the achieved timing quality after CTS was the focus of [36].

Non-tree clock structures have also been tested as a means for reducing clock-induced
OCV. Clock meshes [54] and clock trees with cross links [38, 126] represent the most
relevant approaches. Non-tree structures reduce clock skew and improve the robustness
of clock networks compared to tree-shaped clock networks, but incur an additional non-
trivial cost.

In this work, we try to bring appropriately selected flip-flop and clock gaters closer,
while respecting both their initial spatial locality and the functional clock-gating hier-
archy, in order to create a better seed for CTS to produce clock trees with less path
divergence that are inherently less sensitive to clock-induced OCV. Once global place-
ment and in-place datapath optimization have finished, flip-flops and clock gaters are
first clustered in a bottom-up fashion, using soft clustering [56], and then moved it-
eratively closer to the weighted mean location of the center of all neighbor clusters.
Flip-flop-to-cluster membership is not a hard decision and it is not fixed at any stage
of the algorithm. The membership of flip-flops to clusters is quantified by weights that
model the physical proximity and timing adjacency of the examined clock cells as well
as their timing criticality. Membership weights are not constant but they are dynami-
cally updated as flip-flop/clock-gater relocation evolves. It should be noted that, in this
work, clustering is only used for guiding clock cell relocation, and it does not lead to
circuit restructuring, as done in clustering-driven CTS engines [32, 144], or in other ap-
proaches that use clustering for register clumping [22, 62, 120, 166] or multibit register
composition [79, 86, 139].

The proposed method is applied before CTS and is inherently orthogonal to any pre-
vious work that optimizes directly the clock tree topology for reducing clock-induced
OCV. Even if clock cell relocation is allowed in modern CTS or post-CTS optimization
flows, still the distances that the cells can travel are significantly restricted compared to
the pre-CTS stage of the implementation flow that is the focus of this work.

5.2 Motivation–Problem formulation

In this approach, we focus on changing the clock cell placement to allow the CTS engine
to produce clock trees with as many common paths as possible thus reducing the effect
of clock-induced OCV timing degradation. One generic approach to guide CTS into

112

5.2 MOTIVATION–PROBLEM FORMULATION

placing selected clock cells on the same clock branch is to bring those cells closer in the
physical layout. To take advantage of this property, we need to identify (a) which clock
cells, when put closer, would alleviate OCV derates, and (b) how to relocate the selected
cells. The following example will shed more light on to how we attack the problem of
OCV-aware relocation of clock cells.

A B C

D1

D0
D2

D4 D5

D3

clock

clock tree
buffer

(a) (b)

Figure 5.1: Physical proximity of selected clock cells driven by the same clock nets
reduces clock divergence and improves common clock path delay. (a) The
original clock tree, and its (b) optimized version to tackle clock-induced
OCV.

Let us consider the example shown in Figure 5.1(a) that involves three flip-flops A,
B, C, and a clock gater that drives flip-flops B and C. The clock skew for each one
of the three register-to-register timing paths AB, BC, and CA is the delay difference
between the clock launch and the capture path. The delay of any common path between
the launch and capture paths is omitted when computing their delay difference. Due to
OCV, when considering the worst-case scenario in terms of late constraints, the delay
of the launch clock path is increased by a derating factor γ. For the sake of simplicity,
we also assume that the delay of the capture clock path is decreased by the same factor.
Therefore, the late clock skew of all paths, after the clock divergence point for each
path, is the difference between the maximum clock path delay of the launch path and

113

5 FLIP-FLOP PLACEMENT TARGETING CLOCK-INDUCED OCV

the minimum clock path delay of the capture path.

skewlate
AB = Dmax

1 − (Dmin
2 +Dmin

3 +Dmin
4)

= (D1−D2−D3−D4)+ γ(D1 +D2 +D3 +D4)

skewlate
BC = Dmax

4 −Dmin
5

= (D4−D5)+ γ(D4 +D5)

skewlate
CA = (Dmax

2 +Dmax
3 +Dmax

5)−Dmin
1

= (D2 +D3 +D5−D1)+ γ(D2 +D3 +D5 +D1)

The equations are derived assuming that Dmax
i = Di(1+ γ) and Dmin

i = Di(1− γ), where
Di represents the mean delay (without OCV) and includes both wire and logic delay.

To reduce the impact of OCV, we need to minimize the sum of clock path delays
multiplied by γ. To do so for this example, we start from the lower levels of the clock
hierarchy and try to minimize delays D4 and D5. As shown in Figure 5.1(b), this is
achieved by moving flip-flops B and C closer relative to Figure 5.1(a). This relocation
of flip-flops B and C guides the CTS to place the common branch point of B and C in
close proximity, effectively diminishing the derating effect on path BC. This movement
is justified, since B and C are the endpoints of the same clock net of the same timing
path. Of course, moving B and C closer, for improving OCV, should not degrade data-
path timing.

Next, we move up the clock hierarchy and focus on minimizing the OCV derates on
paths AB and CA. In this case, our goal is to transfer part of the delays D1 and D2 to
the common path D0. To achieve this, we need to bring the clock gater and flip-flop
A closer, as shown in Figure 5.1(b). Flip-flop A and the clock gater are driven by the
same clock net and participate in the same timing paths. Therefore, bringing them closer
increases the probability that CTS will drive them with a common clock path.

On the contrary, moving A closer to B, or C, would not improve clock-induced OCV
and their relative placement should be decided by other criteria. These flip-flops belong
to different clock sub-nets and their last common clock point is above the clock gater.
The gater inevitably acts as a divergence point for the clock net, separating the clock
branch that drives B and C from the clock branch that drives flip-flop A, irrespective
of the physical proximity of A to B and C. The same arguments hold for all flip-flops
that belong to different clock nets. Such flip-flops can be considered irrelevant for the
interaction of their placement with OCV, since their clock divergence point belongs to
an upper level of the clock tree.

In any case, moving clock cells closer should not tradeoff an increase in clock latency.
Latency increase is avoided if cells don’t move far away from the cells they drive in the

114

5.2 MOTIVATION–PROBLEM FORMULATION

clock tree hierarchy. For instance, in Figure 5.1(b) the clock gater should approach A
but at the same time, it should not move too far away from flops B and C. This the reason
for not drawing the gater next to A in this example.

This example highlights that, by creating physical clusters of selected clock cells (tim-
ing neighbors), after examining the cells’ launch-capture connectivity and their position
on the clock tree hierarchy, we increase the probability that those cells are put on the
same clock branch during CTS.

A

G2

G3

Fclock

Level 0Level 1Level 2

clock
subnet

G

bottom up traversal

G1

B

C

D

E

Figure 5.2: An example to explain the definition of timing neighbor clock cells, depend-
ing on their connectivity and positions in the functional clock tree hierarchy.

Two clock cells are timing neighbors if they have clock pins on the same net that
belong to the launch and capture clock parts of a constrained timing path. For example,
in Figure 5.2, flip-flop C is a timing neighbor of flip-flop D and not of flip-flop B. Even
if flip-flop C is connected to both flip-flops B and D, it neighbors only with flip-flop
D since flip-flop B has its clock pin on different net from C. Also, clock gater G1 is a
timing neighbor cell for gater G2, since they have their clock pins on the same net (the
net driven by gater G) and there is a constrained timing path that connects them through
their children (G1 → A→ B→ G2). However, the same is not true for G1 and G3.
Although they are endpoints of the same clock net, there is no timing path that connects
their leaves.

115

5 FLIP-FLOP PLACEMENT TARGETING CLOCK-INDUCED OCV

Algorithm 14: OCV-aware clock Cell Relocation

1 foreach level k of the clock tree - bottom up do
2 foreach clock net n of level k do
3 Cells[n]← all cells at the endpoints of n;
4 Clusters[n]← InitClusters(Cells[n]);
5 repeat // Cluster and Relocate
6 repeat // Soft Clustering
7 Compute m(i, j) ∀i ∈ Cells[n] and j ∈ Clusters[n] using eq. (5.2);
8 Update the centers of all Clusters[n] using eq. (5.4);
9 until convergence;

// Cell relocation

10 foreach cell i ∈ Cells[n] do
11 if i not timing critical && not reached displacement limit then
12 Move i closer to the weighted mean location of the centers of

Clusters[n];
13 end
14 end
15 UpdateTiming();
16 until no cell moved;
17 end
18 end

5.3 Soft Clustering-based Placement

The proposed approach is based on a repetitive process of incremental clustering and
clock cell relocation with the goal to bring timing neighbors closer and increase the
probability that they are driven by the same clock branch after CTS.

Algorithm 14 depicts the overall structure of the proposed method. The clock cells are
examined hierarchically beginning from the leaves of each clock net. The clock cells
at the sinks of each clock net are clustered using the k-Harmonic Means (kHM) soft
clustering algorithm [169]. kHM begins with an initial guess of the solution (line 4 of
Algorithm 14), and then refines the position of the centers until it reaches convergence,
i.e., the positions of the cluster centers change by less than 1% per iteration (lines 6–9
of Algorithm 14).

In contrast to hard clustering algorithms [74,166], kHM is a soft clustering algorithm
and allows the cells to belong to more than one cluster [56]. Function m(si,c j), with

116

5.3 SOFT CLUSTERING-BASED PLACEMENT

0 ≤ m(si,c j) ≤ 1 and ∑
k
j m(si,c j) = 1, defines the grade of membership of clock cell

si to the jth cluster with center c j. This membership function effectively combines the
physical location of the cells with the location of their timing neighbors.

Once the cell-to-cluster memberships have been computed, each examined cell tries
to approach the center of the clusters according to the computed membership grades
(lines 10–14 of Algorithm 14). The soft membership nature of the proposed clustering
algorithm allows all nearby clusters to contribute to the movement of each clock cell.
This feature would have been impossible with clustering algorithms that employ hard
membership functions.

Once all candidate cells have tried one new position, routing and timing are incremen-
tally updated to reflect the available slacks at the inputs and the outputs of the affected
cells (line 15 of Algorithm 14).

5.3.1 Initialize cluster centers

The kHM soft clustering algorithm is executed independently on each clock net n, as-
suming a predetermined number of clusters K. The number of clusters is computed
based on a maximum-allowed cluster size that tries to mimic the maximum-fanout con-
straint imposed on the clock tree.

During initialization, we partition the cells driven by each clock net in equally-sized
groups of clock elements (flip-flops and clock gaters), and select randomly the position
of one cell from each group as the initial cluster center. As it will be shown in Al-
gorithm 15, the initial cluster centers are derived after taking into account the cells of
each net as well as the cluster centers already defined for the hierarchically lower clock
nets. This addition is needed to avoid clock cells being placed far away from the cells
they drive, which could increase clock wirelength and latency. The upper levels of the
clock-tree hierarchy are sparse and involve in most cases a few clock gaters placed far
apart from each other. Therefore, bringing those cells closer, as dictated by the proposed
method, would risk to separate them from the cells they drive. This risk does not appear
on the lower levels of the clock tree where the cells perform only local moves.

The recursive partitioning of the cells driven by each clock net is highlighted in Algo-
rithm 15. In particular, we first define the bounding box that encloses all cells of clock
net n, i.e., Cells[n]. Then, we add to Cells[n] all cluster centers of the lower level of the
clock tree that are connected to each cell of Cells[n] and placed inside the bounding box
of n (line 4 of Algorithm 15). In this way, the cluster initialization of clock net n is done
on AllCells that includes both the cells connected to n and the pre-defined cluster centers
of the hierarchically lower clock sub-nets. Then, the set of points that determine the ini-
tialization of the clusters of net n are first sorted geographically, and they are recursively
partitioned to equally-sized sets using RecPartition function described in Algorithm 15.

117

5 FLIP-FLOP PLACEMENT TARGETING CLOCK-INDUCED OCV

Algorithm 15: Initialize Clusters

1 function InitClusters (Cells[n])
// Set #clusters using cells of subnet n

2 K← Cells[n] / MAX CLUSTER SIZE;
3 BB← BoundingBox(Cells[n]);

// Include cluster centers of next level that are inside BB

4 AllCells← Cells[n] ∪ Valid Centers;
5 step← AllCells / K;
6 SortedCells← Sort AllCells according to their (x,y) co-ordinates (x first).;
7 return RecPartition(SortedCells, step);
8 endfunction
// Recursive partitioning to equal size groups

9 function RecPartition (SortedCells, step)
10 if sizeof(SortedCells) ≤ step then
11 return a random point j ∈ SortedCells;
12 end

// Split SortedCells in two sets

13 C1←SortedCells[1 : step];
14 C2←SortedCells[(step+1) : sizeof(SortedCells)];
15 RecPartition(C1, step);
16 RecPartition(C2, step);
17 endfunction

5.3.2 Compute membership function

In kHM clustering algorithm [169] the probability of a cell si being a member of the jth
cluster is determined by the harmonic average of the distances of each cell to the centers
of all K clusters and is given by:

d(si,c j) =

∥∥si− c j
∥∥−p−2

∑
K
k=1 ∥si− ck∥−p−2 (5.1)

Parameter p is set to 4, to distinguish more clearly the cells that are located far from the
center of the cluster relative to those that are placed in a nearby position. For traditional
2D clustering, the scaled physical distance of a cell from the centers of all clusters given
by d(si,c j) would have been a sufficient clustering quality metric [166, 169]. However,
for the OCV-aware placement of sequential cells, this is not enough. A cluster is a good
candidate for cell si, if the timing neighbors of si, denoted as N (si), also belong to the

118

5.3 SOFT CLUSTERING-BASED PLACEMENT

same cluster, especially the most timing critical ones. In this way, CTS is guided to put
them on the same clock branch and effectively reducing clock-induced OCV.

The proposed membership grade

Membership grade m(si,c j) should reflect both the spatial proximity of si to the center
of the jth cluster c j, as expressed by d(si,c j), as well as the physical proximity of the
neighbors of si to the same cluster. Effectively, the closer a timing neighbor of si is to
cluster j the larger the “pressure” towards cell si to group to the same cluster as well.

To express these dependencies, we define the membership grade of cell si to the jth
cluster as follows:

m(si,c j) = a ·d(si,c j)+(1−a)

|N (si)|
∑

k=1
t(sk,si)d(sk,c j)

|N (si)|
∑

k=1
t(sk,si)

(5.2)

The distance d(sk,c j) of each timing neighbor sk of si contributes relative to its timing
criticality t(sk,si) with respect to si. The more critical the timing path that connects sk
and si, the stronger the need to bring them closer, expecting that CTS will drive them
with a common clock tree path.

For a = 1, membership is determined only by the physical distance of each cell to the
center of each cluster. This corresponds to traditional flip-flop clumping [166], where
flip-flops are clustered together based only on their (x,y) coordinates. On the contrary,
a = 0 would try to bring closer all timing neighbors ignoring their original locations.
Empirically, picking an intermediate value for a = 0.35 offers a balanced clustering that
could realistically increase the common clock paths and decrease OCV derating.

Timing criticality of timing neighbors

The timing criticality t(sk,si) expresses how critical sk is, in terms of timing, with re-
spect to the timing paths launching at si. It is computed by mapping the effective slack
eslk(sk,si) of all neighbors sk ∈N (si) of si to a value in the range [0,1], using the func-
tion (5.3) suggested in [7]. If sk is the most critical neighbor of N (si), then t(sk,si) = 1,
while t(sk,si)→ 0 if sk has much greater slack than the average slack of the rest neigh-
bors.

t(sk,si) = eb
(

minES−eslk(sk ,si)
avgES−minES

)
(5.3)

Effective slack eslk(sk,si), is the total negative slack at sk due to paths launching at si,
or the worst positive slack when no negative timing path exists between si and sk. Terms

119

5 FLIP-FLOP PLACEMENT TARGETING CLOCK-INDUCED OCV

minES and avgES are the minimum and the average effective slack of all neighbors
N (si), and b is a tuning parameter; b = 2 was used since it consistently gave better
results.

To compute the effective slack eslk(sk,si), we need to consider the following cases:

(a): If sk and si are both flip-flops, then we consider the timing paths that connect them
directly.

i) If sk is a launch flip-flop for cell si, effective slack corresponds to its output-
Q pin slack.

ii) If sk is a capture flip-flop for si, effective slack is the slack at its input-D pin.

(b): If sk and si are clock gaters we consider the D/Q pin slacks of the flip-flops placed
at the endpoints of their transitive fanout and not just the slack of their enable
pins. This is done, because we want si to approach the clock gater (sk) that drives
the more critical flip-flops.

For instance, following the clock tree hierarchy shown in Figure 5.2, eslk(G1,G2) in-
volves the timing path A→ B and is equal to the slack of the Q pin of flip-flop A.
Similarly, for eslk(G2,G1) we should examine again the path A→ B, but in this case we
consider the slack at the input-D pin of flip-flop B. For eslk(G3,G2), we examine the
paths B→C and B→ E and consider the slack on the input-D pin of flip-flops C and E.
Path C→ D – that is internal to the subnetwork rooted by G3 – does not contribute to
the effective slack of any of its timing neighbors.

5.3.3 Update cluster center

Once the membership grade of each cell si placed at (xsi ,ysi) to all clusters has been
computed, the location of the center of each cluster (xc j ,yc j) needs to be updated using
Equation (5.4).

xc j =
∑

#cells
i=1 m(si,c j)w(si)xsi

∑
#cells
i=1 m(si,c j)w(si)

yc j =
∑

#cells
i=1 m(si,c j)w(si)ysi

∑
#cells
i=1 m(si,c j)w(si)

(5.4)

Computing the position of the cluster center also takes into account the grade of
influence w and the grade of membership m of each cell. This is a unique feature of
the kHM soft-clustering algorithm, and makes it less sensitive to the initialization of the

120

5.3 SOFT CLUSTERING-BASED PLACEMENT

cluster centers. The grade of influence w(si) of cell si to the positions of all clusters is
given by [169]:

w(si) =
∑

K
j=1
∥∥si− c j

∥∥−p−2(
∑

K
j=1
∥∥si− c j

∥∥−p
)2 (5.5)

By definition, the impact of cells that are not close to any center is increased, while
the impact of cells that are close to one or more center is decreased. This principle helps
in spreading the centers to cover the positions of all cells.

5.3.4 Relocate Cells

After soft clustering has converged, each cell moves closer to the centers of the more
preferable clusters. With this move it attracts its timing neighbors to prefer the same
cluster, and increases the probability of sharing a common clock branch with them after
CTS.

Clock cell si placed at (xsi ,ysi) in the current iteration is relocated to (xnew
si

,ynew
si

). The
new location should be closer to the clusters preferred by si, i.e., its membership grade
for them is high. For this reason, si is relocated to the weighted mean of the location of
the centers of all nearby clusters using (5.6). The contribution of each cluster center to
the new location is proportional to the membership grade of si to each cluster.

xnew
si

=
∑

K
j=1 m(si,c j)xc j

∑
K
j=1 m(si,c j)

, ynew
si

=
∑

K
j=1 m(si,c j)yc j

∑
K
j=1 m(si,c j)

(5.6)

As long as we completely avoid any hard cell-to-cluster assignment, we allow cell
relocation to evolve more smoothly across iterations. If instead we employed hard as-
signments, the cell would move closer only to the center of its assigned cluster, thus pos-
sibly leading to ping-pong movements when cell-to-cluster assignments changed across
iterations. Also, since the relocation of each cell is biased by the relocation of its timing
neighbors, it means that, after several iterations, a better global solution is reached.

A cell is allowed to move and approach its new location when it has positive slack to
spend and has not reached its displacement limit yet. Our goal is to utilize some of the
positive slack of certain clock cells to form large common branches in the clock tree in
other parts of the design that are more timing critical. In any case, we avoid creating
a tradeoff between improving clock-induced OCV and degrading data-path timing. A
flip-flop is considered safe to move to improve the common clock branches of its timing

121

5 FLIP-FLOP PLACEMENT TARGETING CLOCK-INDUCED OCV

Cluster centers locations

New location co-ordinates

Flop-to-Cluster
membership grades

D Q

Fanin
slack

Fanout
slack

Timing

Feasible
Region

Figure 5.3: A flip-flop approaching its new location computed as the weighted mean
of the three cluster centers. Its relocation is limited by the current timing
feasible region.

neighborhood, as long as the input-D and output-Q pin slacks are both positive. Simi-
larly, a clock gater is safe to move when its input-enable pin slack is positive and there
is no critical flip-flop at the subtree rooted on this clock gater.

Figure 5.3 illustrates graphically the overall cell relocation process. The new location
is the weighted mean of the centers of all nearby clusters and cell movement is bounded
by its timing feasible region [21], i.e., the common region formed by the transformation
to equivalent distance of the positive slacks of the fanin and fanout nets. Each flip-
flop’s input and output positive slack define a diamond centered by the fanin and fanout
gates of the clock cell, while its half diagonal corresponds to the equivalent distance
computed using Elmore delay. In the case of nets with multiple endpoints, each endpoint
is considered individually and the intersection of the diamonds of all endpoints is kept.

The cell is legalized instantly to the new suggested position, or to a close-by available
position chosen by the legalizer (within 5 rows). Also, when we relocate a cell, the
routing congestion and/or row utilization may be degraded due to this movement. To
avoid such deteriorations, we do not perform relocations to areas where the routing
congestion and/or row utilization is already high, since such movements would affect
these metrics even more negatively.

122

5.3 SOFT CLUSTERING-BASED PLACEMENT

When a cell is relocated it alters its own timing profile as well as the timing profile
of all connected cells. Thus, timing and routing needs to be updated to have an accurate
view of the timing slacks of each cell. However, performing such incremental updates
per cell movement is prohibitive in terms of runtime. As depicted in Algorithm 14,
timing and routing are updated once every iteration, after moving many cells. In the
meantime, the slacks per cell remain inaccurate. However, respecting the maximum
displacement limit and the fact that no cell moves beyond its timing feasible region
partially alleviates the problem.

Finally, after each cell relocation two metrics should be updated: its own membership
and influence grades relative to every cluster, and the membership grade of every timing
neighbor, even if neighbors were not actually moved. After that, the position of the cen-
ters of all clusters should be updated, too. Therefore, the re-execution of soft clustering
after partial cell relocation needs fewer iterations to converge. At some point, cells and
their clusters have been stabilized with no cell being able to move. Please note that once
a cell moves closer to the centers of its preferred clusters, it directly impacts the grade of
membership of all other connected cells, and all together affect the new position of the
centers of all clusters. This orchestrated movement gradually makes the clusters more
distinct.

5.3.5 Algorithm complexity

The proposed cell clustering and relocation is executed independently per clock net in
a bottom up manner. Let’s assume that each clock net consists of N endpoints (clock
cells). In the worst case, the N cells can be split to N/K clusters while each cell can have
N timing neighbors. Therefore, letting each one of the N cells of the clock net examine
all possible cluster centers and all possible timing neighbors leads to a complexity of
O(N3) per clock net. For C clock nets in the functional clock tree hierarchy, the overall
complexity is O(C N3). In practice, the runtime complexity is lower since the designs
consist of many small clock nets (i.e, small N per net, large number of nets C) due to
the deep functional clock-gating hierarchy seen in modern designs.

In all cases we consider all clock nets. Thus, we cannot reduce the contribution of
C in the runtime complexity. To limit the runtime complexity of the proposed method,
we restrict the computation involved per clock net. In our experiments, each cell of a
clock net cannot examine more than 50 timing neighbors of the same clock net (the ones
placed far away are avoided), while it considers at most 20 nearby cluster centers.

123

5 FLIP-FLOP PLACEMENT TARGETING CLOCK-INDUCED OCV

5.4 Experimental Results

The proposed flip-flop and clock gater placement methodology has been implemented
in C++ and integrated in the Nitro-SoC place-and-route tool. It is executed after global
placement and data-path optimization. The former provides valid cell locations, whereas
the latter fuels the cells with positive slack allowing them to cover bigger distances.
Once the proposed algorithm has concluded, cell group placement constraints are gen-
erated for all clustered cells. The cell groups act as fences prohibiting the clustered cells
to move away from their initial position. The rest of the implementation flow remains
unchanged and runs to completion.

To judge the overall effectiveness of the proposed method, in terms of timing, OCV
robustness, and clock tree complexity, we compare it with two versions of the reference
flow: The first one “Base” represents the industrial quality flow which was originally
used to implement the designs. The second one, denoted as “Cluster”, activates physical
register clustering at the same point in the flow as the proposed method, and implements
the algorithm presented in [166]. In particular, this physical clustering [166] utilizes a
modified version of k-means algorithm, driven by placement and physical distance cri-
teria, to create physical groups of flip-flops with the goal to simplify the clock tree and
reduce clock power. However, we included this technique in our comparisons to high-
light that flop grouping techniques that rely on hard flop-to-cluster assignments and use
only physical distances for clustering, while ignoring timing criticalities and flip-flop
communication, cannot reduce succesfuly the impact of clock-induced OCV. Our im-
plementation of “Cluster” creates groups of tightly placed flip-flops without necessarily
forming banks of regularly-placed flip-flops as done in [166]. “Cluster” and the pro-
posed approach cannot move clock cells more than the maximum allowed displacement
of 20 rows.

The effectiveness of the proposed method is evaluated on real industrial designs that
cover different complexities spanning from 82K up to 1.54M cells and implemented in
different technologies between 28 and 14nm. All designs but D2 are constrained with
Advanced OCV (AOCV) derates [34]. D2 has simple OCV derates.

5.4.1 Timing comparisons

The results obtained by the three methods under comparison with respect to timing for
setup and hold constraints are shown in Table 5.1. The first noticeable result is that
in all cases, when applying the proposed flip-flop relocation, the worst-negative slack
(WNS) and total negative slack (TNS), for both setup and hold analysis, is reduced; an
indication that the criticality of certain paths due to OCV is reduced.

124

5.4 EXPERIMENTAL RESULTS

Table 5.1: The timing and row utilization of all designs for the reference implementa-
tion flow (Base), the modified flow including the physical register clustering
(Cluster) of [166] and the proposed OCV-aware clock cell relocation (New).

Design
Setup Hold

Util
(%)

WNS
(ps)

TNS
(ns)

WHS
(ps)

THS
(ns)

D1 - 14nm
82K cells
4.5K regs

Base -337.2 -29.7 0.0 0.0 70.9
Cluster -320.0 -28.8 0.0 0.0 70.5

New -297.0 -25.2 0.0 0.0 70.9
D2 - 28nm
199K cells
16K regs

Base -396.0 -885.0 -134.0 -0.6 65.1
Cluster -409.0 -1148.1 -104.0 -7.5 63.6

New -368.0 -768.2 -1.0 -0.1 62.9
D3 - 16nm
542K cells
35K regs

Base -43.0 -0.6 -15.0 -0.6 55.5
Cluster -137.0 -0.9 -17.0 -0.1 55.8

New -24.0 -0.3 -14.0 -0.1 55.7
D4 - 22nm
557K cells
47K regs

Base -232.0 -564.2 0.0 0.0 80.3
Cluster -288.0 -677.0 0.0 0.0 80.8

New -223.0 -392.5 0.0 0.0 80.6
D5 - 16nm
611K cells
45K regs

Base -802.0 -442.9 -35.0 -1.4 56.5
Cluster -668.0 -487.0 -49.0 -0.9 55.6

New -379.0 -100.6 -30.0 -0.6 56.7
D6 - 14nm
1545K cells

71K regs

Base -103.0 -41.1 -93.0 -6.0 64.7
Cluster -68.0 -20.6 -170.0 -20.2 63.8

New -59.0 -16.4 -68.0 -1.9 65.1

Contribution (%) of “New” to the runtime of the full flow
D1 D2 D3 D4 D5 D6

0.83% 0.38% 8.18% 1.23% 6.20% 1.69%

Flip-Flops and clock-gaters have exchanged some of their positive slack to help crit-
ical cells reduce the OCV effect on their timing paths. Setup TNS has reduced by 42%
on average, while setup WNS is better by 28% on average. Worst Hold Slack (WHS)
and Total Hold Slack (THS) have been improved by 45% and 73% respectively. The
average savings include the savings of the proposed design relative to both “Base” and
“Cluster” method used for comparison. TNS and THS reductions are more distinct since
the criticality of the timing neighbors of each cell (see Equation (5.3)) takes into account
the sum of the negative slacks of the related timing paths.

At the rightmost column of Table 5.1 we report the utilization for each design. The
maximum local utilization does not increase since we employ safeguards to avoid re-

125

5 FLIP-FLOP PLACEMENT TARGETING CLOCK-INDUCED OCV

locating cells to areas with already high utilization or routing congestion. The average
utilization change is negligible although D2 exhibited a significant utilization improve-
ment with the proposed methodology.

It should be noted that the reported timing violations were collected after the post-
CTS optimizations of an industrial quality flow. It is very common in physical de-
sign that improvements obtained at specific points in the flow to be partially lost by
the optimizations performed later on. However, the proposed cell relocation integrated
smoothly with the rest of the flow providing by far the best overall timing Quality-of-
Results (QoR).

At the bottom of Table 5.1, the runtime of the proposed work is reported as the con-
tribution (%) of “New” to the runtime of the full flow. The percentages reported cor-
respond to the single-threaded execution of the proposed cell relocation algorithm on a
machine with four Intel Xeon CPUs at 2.60 GHz and with 250GB memory. The run-
time complexity is heavily dependent of the functional clock tree hierarchy, i.e., on the
number of clock nets and the endpoints per clock net. Since the proposed method is
executed independently on the cells of each clock net, in our future work, we plan to
assign the soft-clustering and cell relocation on each clock net to different threads.

5.4.2 Clock-induced OCV redistribution

To observe more clearly how the proposed method guided the CTS engine to produce
clock trees with increased common clock tree paths for the communicating sequential
elements, we computed the histogram of the impact of clock-induced OCV on late slack
on a large set of timing paths.

For the 30K most critical paths of each design, we measured the difference of the
path’s late slack with and without OCV derates. Then, to produce the required his-
tograms, we split the paths to bins according to the derived slack value. For instance, a
bin of 60ps containing a certain number of paths means that those paths are derated in
overall by 60ps due to clock-induced OCV relative to the case that OCV is neglected.
The histograms of the impact of OCV on late slack for two representative designs and
for the three methods under comparison are shown in Figure 5.4. Similar results are
obtained for other designs.

Both diagrams of Figure 5.4 reveal that the proposed method (“New”) correctly iden-
tified the paths most heavily affected by OCV and restructured them to increase their
common clock path. For example, for “New” the majority of the paths in the case of
D3 in Figure 5.4(a), are affected by 60–110 ps due to OCV. On the contrary, for the
baseline design, the impact of OCV is more pronounced since the majority of the paths
in this case experience a slack impact of 160ps due to OCV. Similarly, for design D6
in Figure 5.4(b), the proposed method achieved to shift the OCV impact of 210 ps and

126

5.4 EXPERIMENTAL RESULTS

0

12k

10k

8k

6k

4k

2k

14k

16k

18k

N
u

m
b

e
r

o
f

p
a
th

s

10 110 160 210 26060
Absolute slack impact due to OCV (ps)

Base
Cluster
New

(a)

10 110 160 210 26060
Absolute slack impact due to OCV (ps)

0

12k

10k

8k

6k

4k

2k

14k

16k

18k

N
u

m
b

e
r

o
f

p
a
th

s

Base
Cluster
New

(b)

Figure 5.4: The histogram of the impact of clock-induced OCV on late slack on designs
(a) D3 and (b) D6.

above to 160 ps. On the other hand, the restructuring of the clock tree triggered by
“Cluster” [166] distributes the slack across critical paths in a non-favorable manner.
This behavior highlights that simple physical clustering of clock cells is not enough for
tackling the effect of clock-induced OCV.

5.4.3 Clock tree complexity

The reduction of slack degradation due to OCV and the overall improvement of timing
achieved by the proposed method, as observed at the end of the flow, does not incur any

127

5 FLIP-FLOP PLACEMENT TARGETING CLOCK-INDUCED OCV

Table 5.2: Clock tree characteristics for all three methods under comparison.

Design
Clock tree

Buffers WL (mm) Cap (pF) Lat (ps) Skew (ps)

D1
Base 64 18.7 8.4 352 88

Cluster 65 19.0 8.5 320 88
New 64 18.1 8.2 341 108

D2
Base 342 103.6 33.6 635 162

Cluster 300 102.6 33.3 604 134
New 303 99.5 32.4 535 124

D3
Base 1285 211.9 85.5 690 164

Cluster 1201 210.8 84.7 740 140
New 1216 211.2 84.2 677 166

D4
Base 6650 326.1 150.0 661 98

Cluster 6688 338.2 151.5 599 110
New 6637 327.2 149.8 679 123

D5
Base 5719 250.4 238.3 1642 143

Cluster 6009 267.1 250.9 1749 142
New 5611 253.5 239.9 1646 112

D6
Base 9463 569.6 774.0 1911 197

Cluster 9540 580.7 778.5 1808 236
New 9650 571.1 776.0 1540 173

significant overhead to the complexity of the clock tree. This conclusion is supported by
the results in Table 5.2 which shows the number of clock buffers, the clock wirelength,
and the total clock capacitance including both wire and pin capacitances, as well as the
average clock latency and the clock skew. In most of the cases, the clock tree QoR
metrics exhibited insignificant differences. However, there were cases where noticeable
changes were observed. For instance, the clock latency of “New” for D6 improved
compared to the “Base” at the cost of more clock repeaters. Our work did not intend to
exercise this trade-off. This was a decision made by the CTS implementation engine.

5.5 Conclusions

Applying iteratively soft clustering and clock-cell relocation improves the physical prox-
imity of timing-neighbor and reduces the clock-induced OCV by increasing the com-
mon clock tree paths. To achieve this result at the end of the flow requires a balanced
approach that would take into account the spatial proximity and the timing criticality of
the cells and their timing neighbors in the functional clock-tree hierarchy. Such metrics

128

5.5 CONCLUSIONS

have been gracefully combined in the soft clustering algorithm that drives clock cell
relocation. The results across six industrial benchmarks demonstrate the effectiveness
of the proposed approach in producing robust clock trees with significantly improved
timing.

129

6 Conclusions

6.1 Summary

As technology scales and the number of cells contained in the design continues to grow,
the overall design flow and the timing closure become a major challenge. Even if EDA
industry reacted appropriately for several years in developing design methodologies
that best address the emerging technology challenges, currently, it faces three inter-
twined and hard-to-solve challenges: cost, quality and runtime predictability. The focus
of this PhD research is next generation physical design automation methods and tools
that satisfy the aforementioned design goals. To this end, in this thesis we identified
two major aspects that impact physical design scalability: (a) the need to design novel
multi-objective algorithms for achieving fast and incremental execution while handling
complex multi-mode multi-corner design constraints, and (b) the application of such
approaches in a runtime scalable approach supported by efficient parallelism in phys-
ical design automation algorithms that enable handling the vast complexity of modern
designs with reasonable runtime and without sacrificing quality of results.

The first presented solution optimizes the timing of the design by relocating the cells.
The proposed method extends the Lagrangian Relaxation (LR) formulation to relocate
all types of cells in a unified manner taking into account both the late and early timing
constraints. Before the LR-based placement optimization of the LCBs, a preparatory
step is proposed in order to separate flip-flops with incompatible timing profiles. This is
achieved using a modified k-means flip-flop clustering algorithm in which for the com-
putation of the cost a scaling factor is used that artificially changes the distance of the
members of the cluster from the cluster center. In this way, the resulting clusters have
uneven sizes delaying or speeding up the clock latency of the appropriate clusters. Using
LR, the non-negative weights called Lagrange Multipliers (LMs) act as penalty factors
in the global cost function to reflect when the corresponding constraints are violated.
However, these LMs are also used as force-like timing vectors to appropriately position
the search window. This results to all the tried locations to be beneficial in terms of tim-
ing for the examined cell and therefore improves the optimization’s convergence. The
proposed approach achieves significant improvements in early and late timing results
when compared to similar timing-driven techniques.

131

6 CONCLUSIONS

With the appropriate initialization of the LMs, the second solution presented in this
thesis, allows the incremental application of LR-based optimizers at various parts of the
design flow. The proposed initialization takes into account both the timing criticality,
as well as, the current size of the gates in order to predict the right point to start the
optimization. In this way, without affecting any part of the internal functions, we ex-
pedite successfully the convergence of the LR-based gate sizer. The presented method
has been evaluated on benchmarks considering single and multiple corners. In the lat-
ter cases, the optimizer has to meet all the timing constraints across different operating
conditions. In all cases, the proposed initialization offers smooth convergence without
un-necessary power and timing degradation.

In the third part of this thesis, we expressed all parts of timing and power optimization
as a task-based parallel program in order to exploit high CPU parallelism. Even the parts
that are traditionally executed serially are converted to parallel processes. To achieve
this, we decompose the optimization process into a set of dependent tasks. For each part
of the timing optimization algorithm a different task graph is derived. Together with
task-based parallel programming, two heuristics are proposed to reduce runtime. In the
first one, the number of examined sizes per gate is reduced according to the gates slack,
while in the second one, the neighbors that participate in the local timing update are
limited accelerating the local decision process sacrificing timing accuracy.

The final contribution of this thesis is an iterative soft clustering and clock-cell relo-
cation method that reduces the clock-induced On-Chip Variations (OCV). This work is
applied at the end of the flow and thus is orthogonal to the clock tree synthesis engine.
The clock tree is traversed in a bottom up manner starting from the leaves and for each
net a modified soft clustering is applied to find the appropriate location for the clock
cells. More specifically, the clustering takes into account the spatial proximity and the
timing criticality of the clock cells as well as their timing neighbors in the clock-tree
hierarchy. Then, following the result of the clustering method, the cells of each cluster
are relocated closer to each other so that after the clock tree generation they are driven
by the same clock branch reducing the timing impact of the OCV in the clock tree. This
novel methodology can effectively produce robust clock trees and gives significant im-
provements in the late and early timing of the designs with only sight overhead to the
final clock tree complexity. The benefits are shown across industrial benchmarks.

6.2 Future Work

The methods proposed in this thesis cover multiple aspects of timing-driven optimiza-
tions, offering significant improvements in the timing profile of each design without
increasing the final power and area. Although the presented solutions represent a ma-

132

6.2 FUTURE WORK

ture timing optimization portfolio, there are still many opportunities planned for future
research.

For instance, in timing compatibility flip-flop clustering we need to derive an effi-
cient approach for deciding beforehand the most appropriate number of clusters. This is
highly critical when applying the proposed clustering approach in a pre-CTS phase of
the design. When the number of clusters is small, the separation of timing incompatible
flip-flops becomes more challenging and there is always the risk to assign to the same
cluster slow and fast flip-flops. In addition, it is more difficult to achieve the second
target of the clustering that is to create uneven cluster sizes. On the opposite cases that
clustering works on too many available cluster centers, each cluster ends up having very
few flip-flops. This solution increases the number of clock buffers as well as the clock
tree complexity that leads to increased the clock tree power.

The second approach is to generalize the initialization of the Lagrange Multipliers
in order to allow other optimization methods that rely on Lagrangian Relaxation to be
applied in an incremental application context. In the current version, a new initializa-
tion is proposed for the gate sizing methods. The LMs are initialized based not only on
the timing criticality of the arcs, but also on the power criticality of their corresponding
gates. For similar optimizations such as LR-based timing-driven placement, the LM ini-
tialization can tradeoff the timing criticality and the wirelength for better performance.
In this way, the LMs of cells with positive slack which are also connected with increased
wirelength, will have higher values so that they will be placed closer.

Regarding the LR-based gate sizing with task based parallel programming, we want
to apply this approach to other timing optimization methods. For instance, it would be
interesting to perform the proposed LR-based timing driven placement using TaskFlow
in order to accelerate significantly the execution time. This would allow us also to better
tune the formulation of tasks, their size and the dependencies between them. In general,
the number of task dependencies affects the final obtained QoR in two ways. First of all,
an increased number of dependencies limits the available parallelism. In other words,
the number of tasks executed simultaneously is reduced and therefore the runtime is
increased. At the same time, as the execution approximates the single-threaded run,
the optimization has high timing accuracy. Therefore, it is understood that our future
work will focus on identifying how many dependencies can be removed to increase the
parallelism without significant degradation of the obtained QoR.

The proposed OCV-aware clock cell relocation method is an effective way to reduce
the timing impact of the clock induced OCV. However, there are some improvements
planned as future work. First of all, the relocation of the clock cells relies on the result
of the modified soft clustering algorithm that takes into account the physical proximity
and the timing criticality of the cells and their timing neighbors. But, if the objective of
the clustering method, in addition to the current features, takes into account the useful

133

6 CONCLUSIONS

clock skew of the clock cells, better results are expected. More specifically, the clock
tree cells can be assigned with useful clock skew that improves their timing. Including
the useful skew in the computation of the membership for each cell results to place
closer the elements with similar skew and thus increases the probability of the clock
tree engine to drive these cells with the same clock branch.

In parallel, there is the plan to consider the consequences of the clock cells relocation
on the clock tree complexity. The current version of the proposed method relocates the
clock elements at the end of the pre-CTS phase to invoke the following CTS engine to
build clock trees with increased common clock paths. Therefore, the final characteristics
of the clock tree such as latency, skew and the number of buffers are decisions made by
the CTS implementation engine. However, we want to predict the effects of the clock
cell movements happened in the pre-CTS phase on the clock tree. In this way, we will
be able to prefer movements that lead to high performance solutions with low power and
area.

Finally, we plan to slightly enhance the CTS engine in order to create more robust
clock trees for the OCV. Our current solution is orthogonal to the CTS method itself.
This means that we change the design’s placement pre-CTS in order to produce trees
with increased common clock tree paths. It is clear that modifying the CTS methodology
to identify the closer placed clock cells, longer common clock paths can be built for them
with significant improvements in the final results.

134

Bibliography

[1] Christoph Albrecht, Shrirang Dhamdhere, Suresh Nair, Krishnan Palaniswami,
and Sascha Richter. Sequential Logic Synthesis with Retiming in Encounter RTL
Compiler (RC). 2006.

[2] Christoph Albrecht, Bernhard Korte, Jürgen Schietke, and Jens Vygen. Maxi-
mum mean weight cycle in a digraph and minimizing cycle time of a logic chip.
Discrete Applied Mathematics, 123(1):103–127, 2002.

[3] Christoph Albrecht, Pascal Witte, and Andreas Kuehlmann. Performance and
Area Optimization using Sequential Flexibility. In International Workshop on
Logic and Synthesis (IWLS), 2004.

[4] Charles J. Alpert, Chris Chu, Gopal Gandham, Miloš Hrkić, Jiang Hu, Chan-
dramouli Kashyap, and Stephen Quay. Simultaneous Driver Sizing and Buffer
Insertion Using a Delay Penalty Estimation Technique. In International Sympo-
sium on Physical Design (ISPD), pages 104 – 109, 2002.

[5] Charles J. Alpert, Gopal Gandham, Miloš Hrkić, Jiang Hu, Stephen T. Quay, and
Cliff N. Sze. Porosity-aware buffered Steiner tree construction. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 23(4):517–
526, 2004.

[6] Charles J. Alpert, Milos Hrkic, Jiang Hu, and Stephen T. Quay. Fast and flexible
buffer trees that navigate the physical layout environment. In Design Automation
Conference (DAC), pages 24–29, 2004.

[7] Charles J. Alpert, Miloš Hrkić, Jhen-Jia Hu, Andrew Kahng, John Lillis, Bao Liu,
Stephen T. Quay, Sachin Sapatnekar, AJ Sullivan, and Paul Villarrubia. Buffered
Steiner Trees for Difficult Instances. In International Symposium on Physical
Design (ISPD), pages 4–9, 2001.

[8] Charles J. Alpert, Zhuo Li, Michael D. Moffitt, Gi-Joon Nam, Jarrod A. Roy,
and Gustavo Tellez. What Makes a Design Difficult to Route. In International
Symposium on Physical Design (ISPD), page 7–12, 2010.

135

BIBLIOGRAPHY

[9] Olivier Aumage, Paul Carpenter, and Siegfried Benkner. Task-Based Perfor-
mance Portability in HPC. In European Technology Platform for High Perfor-
mance Computing (ETP4HPC), 2021.

[10] Michel Berkelaar, Pim Buurman, and Jochen Jess. Computing the entire ac-
tive area/power consumption versus delay tradeoff curve for gate sizing with a
piecewise linear simulator. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 15(11):1424–1434, 1996.

[11] Michel Berkelaar and Jochen Jess. Gate sizing in MOS digital circuits with linear
programming. In European Design Automation Conference (EDAC), pages 217–
221, 1990.

[12] Jayaram Bhasker and Rakesh Chadha. Static Timing Analysis for Nanometer
Designs: A Practical Approach. Springer, 2009.

[13] Koustav Bhattacharya and Nagarajan Ranganathan. A Linear Programming For-
mulation for Security-Aware Gate Sizing. In Great Lakes Symposium on VLSI
(GLSVLSI), page 273–278, 2008.

[14] Kenneth D. Boese, Andrew B. Kahng, and Gabriel Robins. High-Performance
Routing Trees with Identified Critical Sinks. In Design Automation Conference
(DAC), pages 182–187, 1993.

[15] Stephen Boyd, Seung-Jean Kim, Lieven Vandenberghe, and Arash Hassibi. A
Tutorial on Geometric Programming. Optimization and Engineering, 8:67–127,
05 2007.

[16] Pak K. Chan. Algorithms for Library-Specific Sizing of Combinational Logic. In
Design Automation Conference (DAC), page 353–356, 1991.

[17] Tuck-Boon Chan, Kwangsoo Han, Andrew B. Kahng, Jae-Gon Lee, and Sid-
dhartha Nath. OCV-aware Top-level Clock Tree Optimization. In Great Lakes
Symposium on VLSI (GLSVLSI), pages 33–38, 2014.

[18] Tuck-Boon Chan, Andrew B. Kahng, and Jiajia Li. NOLO: A no-loop, predictive
useful skew methodology for improved timing in IC implementation. In Interna-
tional Symposium on Quality Electronic Design (ISQED), pages 504–509, 2014.

[19] K. Chaudhary and M. Pedram. Computing the area versus delay trade-off curves
in technology mapping. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 14(12):1480–1489, 1995.

136

BIBLIOGRAPHY

[20] Chung-Ping Chen, Chris Chu, and D. F. Wong. Fast and exact simultaneous gate
and wire sizing by Lagrangian relaxation. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 18(7):1014–1025, July 1999.

[21] Zhi-Wei Chen and Jin-Tai Yan. Routability-constrained Multi-bit Flip-flop Con-
struction for Clock Power Reduction. Integration VLSI, 46(3), June 2013.

[22] Yongseok Cheon, Pei-Hsin Ho, Andrew B. Kahng, Sherief Reda, and Qinke
Wang. Power-aware placement. In Design Automation Conference (DAC), pages
795–800, 2005.

[23] David Chinnery and Kurt Keutzer. Linear Programming for Sizing, Vth and Vdd
Assignment. In International Symposium on Low Power Electronics and Design
(ISLPED), pages 149–154, 2005.

[24] David Chinnery and Ankur Sharma. Integrating LR Gate Sizing in an Industrial
Place-and-Route Flow. In International Symposium on Physical Design (ISPD),
page 39–48, 2022.

[25] Amit Chowdhary, Karthik Rajagopal, Satish Venkatesan, Tung Cao, Vladimir
Tiourin, Yegna Parasuram, and Bill Halpin. How Accurately Can We Model
Timing in a Placement Engine? In Design Automation Conference (DAC), pages
801–806, 2005.

[26] Chris Chu and Yiu-Chung Wong. FLUTE: Fast Lookup Table Based Rectilin-
ear Steiner Minimal Tree Algorithm for VLSI Design. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 27(1):70–83, Jan
2008.

[27] Jason Cong, Andrew Kahng, G. Robins, Majid Sarrafzadeh, and C.K. Wong.
Provably Good Performance-Driven Global Routing. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 11(6):739–752, 07
1992.

[28] Jordi Cortadella. Timing-driven logic bi-decomposition. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 22(6):675–685,
2003.

[29] Olivier Coudert. Gate Sizing for Constrained Delay/Power/Area Optimization.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 5(4):465–
472, 1997.

137

BIBLIOGRAPHY

[30] Siad Daboul, Nicolai Hähnle, Stephan Held, and Ulrike Schorr. Provably Fast
and Near-Optimum Gate Sizing. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 37(12):3163–3176, 2018.

[31] Leonardo Dagum and Ramesh Menon. OpenMP: An Industry-Standard API for
Shared-Memory Programming. IEEE Computational Science and Engineering,
5(1):46–55, 1998.

[32] Chao Deng, Yi-Ci Cai, and Qiang Zhou. Register Clustering Methodology for
Low Power Clock Tree Synthesis. Journal of Computer Science and Technology,
30(2):391–403, Mar 2015.

[33] Rahul B. Deokar and Sachin S. Sapatnekar. A graph-theoretic approach to clock
skew optimization. In International Symposium on Circuits and Systems (ISCAS),
volume 1, pages 407–410 vol.1, 1994.

[34] Ahran Dunsmoor and Dr. João Geada. Applications and Use of Stage-based
OCV. in EDA Designline, May 21, 2012.

[35] Hans Eisenmann and Frank M. Johannes. Generic global placement and floor-
planning. In Design and Automation Conference (DAC), pages 269–274, 1998.

[36] Rickard Ewetz. A Clock Tree Optimization Framework with Predictable Timing
Quality. In Design Automation Conference (DAC), pages 1–6, 2017.

[37] Rickard Ewetz and Cheng-Kok Koh. A Useful Skew Tree Framework for In-
serting Large Safety Margins. In International Symposium on Physical Design
(ISPD), page 85–92, 2015.

[38] Rickard Ewetz and Cheng-Kok Koh. Cost-Effective Robustness in Clock Net-
works Using Near-Tree Structures. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 34(4):515–528, April 2015.

[39] Rickard Ewetz, Chuan Yean Tan, and Cheng-Kok Koh. Construction of Latency-
Bounded Clock Trees. In International Symposium on Physical Design (ISPD),
page 81–88, 2016.

[40] Hamed Fatemi, Andrew B. Kahng, Hyein Lee, Jiajia Li, and Jose Pineda de
Gyvez. Enhancing sensitivity-based power reduction for an industry IC design
context. Integration, 66:96–111, 2019.

138

BIBLIOGRAPHY

[41] John P. Fishburn. A depth-decreasing heuristic for combinational logic; or how to
convert a ripple-carry adder into a carry-lookahead adder or anything in-between.
In Design Automation Conference (DAC), pages 361–364, 1990.

[42] John P. Fishburn. Clock Skew Optimization. IEEE Transactions on Computers,
39(7):945–951, 1990.

[43] John P. Fishburn and Alfred E. Dunlop. TILOS: A posynomial programming
approach to transistor sizing. In International Conference on Computer-Aided
Design (ICCAD), 2003.

[44] Guilherme Flach, Mateus Fogaça, Jucemar Monteiro, Marcelo Johann, and Ri-
cardo Reis. Drive Strength Aware Cell Movement Techniques for Timing Driven
Placement. In International Symposium on Physical Design (ISPD), pages 73–
80, 2016.

[45] Guilherme Flach, Mateus Fogaça, Jucemar Monteiro, Marcelo Johann, and Ri-
cardo Reis. Rsyn: An Extensible Physical Synthesis Framework. In International
Symposium on Physical Design (ISPD), pages 33–40, 2017.

[46] Guilherme Flach, Jucemar Monteiro, Mateus Fogaça, Julia Puget, Paulo Butzen,
Marcelo Johann, and Ricardo Reis. An Incremental Timing-Driven Flow Using
Quadratic Formulation for Detailed Placement. In International Conference on
Very Large Scale Integration (VLSI-SoC), pages 1–6, Oct 2015.

[47] Guilherme Flach, Tiago Reimann, Gracieli Posser, Marcelo Johann, and Ricardo
Reis. Effective Method for Simultaneous Gate Sizing and Vth Assignment Us-
ing Lagrangian Relaxation. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 33(4):546–557, April 2014.

[48] T. Gao, Pravin M. Vaidya, and Chung Laung Liu. A performance driven macro-
cell placement algorithm. In Design Automation Conference (DAC), pages 147–
152, 1992.

[49] Soheil Ghiasi, Eli Bozorgzadeh, Po-Kuan Huang, Roozbeh Jafari, and Majid Sar-
rafzadeh. A Unified Theory of Timing Budget Management. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 25:2364 – 2375,
12 2006.

[50] Guannan Guo, Tsung-Wei Huang, Yibo Lin, and Martin Wong. GPU-accelerated
Critical Path Generation with Path Constraints. In International Conference on
Computer-Aided Design (ICCAD), pages 1–9, 2021.

139

BIBLIOGRAPHY

[51] Guannan Guo, Tsung-Wei Huang, Yibo Lin, and Martin Wong. GPU-accelerated
Path-based Timing Analysis. In Design Automation Conference (DAC), pages
721–726, 2021.

[52] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. GPU-Accelerated Static Tim-
ing Analysis. In International Conference on Computer-Aided Design (ICCAD),
pages 1–9, 2020.

[53] Chrystian Guth, Vinicius Livramento, Renan Netto, Renan Fonseca, José Luı́s
Güntzel, and Luiz Santos. Timing-Driven Placement Based on Dynamic Net-
Weighting for Efficient Slack Histogram Compression. In International Sympo-
sium on Physical Design (ISPD), pages 141–148, 2015.

[54] Matthew R. Guthaus, Gustavo Wilke, and Ricardo Reis. Revisiting Automated
Physical Synthesis of High-performance Clock Networks. ACM Transactions on
Design Automation of Electronic Systems, 18(2):31:1–31:27, April 2013.

[55] Bill Halpin, C. Y. Roger Chen, and Naresh Sehgal. Timing Driven Placement
Using Physical Net Constraints. In Design Automation Conference (DAC), pages
780–783, 2001.

[56] Greg Hamerly and Charles Elkan. Alternatives to the K-means Algorithm That
Find Better Clusterings. In International Conference on Information and Knowl-
edge Management (CIKM), pages 600–607, 2002.

[57] Inhak Han, Daijoon Hyun, and Youngsoo Shin. Buffer insertion to remove hold
violations at multiple process corners. In Asia and South Pacific Design Automa-
tion Conference (ASP-DAC), pages 232–237, 2016.

[58] Kwangsoo Han, Jiajia Li, Andrew B. Kahng, Siddhartha Nath, and Jongpil Lee.
A Global-Local Optimization Framework for Simultaneous Multi-Mode Multi-
Corner Clock Skew Variation Reduction. In Design Automation Conference
(DAC), pages 26:1–26:6, 2015.

[59] Jiayuan He, Martin Burtscher, Rajit Manohar, and Keshav Pingali. SPRoute: A
Scalable Parallel Negotiation-based Global Router. In International Conference
on Computer-Aided Design (ICCAD), pages 1–8, 2019.

[60] Stephan Held. Gate Sizing for Large Cell-based Designs. In Design, Automation
and Test in Europe (DATE), pages 827–832, 2009.

[61] Yi-Ju Ho and Wai-Kei Mak. Power and density-aware buffer insertion. In VLSI
Design, Automation and Test (VLSI-DAT), pages 287–290, 2008.

140

BIBLIOGRAPHY

[62] Wenting Hou, Dick L. Liu, and Pei-Hsin Ho. Automatic Register Banking for
Low-power Clock Trees. In International Symposium on Quality of Electronic
Design (ISQED), pages 647–652, 2009.

[63] Jin Hu, Andrew B. Kahng, SeokHyeong Kang, Myung-Chul Kim, and Igor L.
Markov. Sensitivity-Guided Metaheuristics for Accurate Discrete Gate Sizing. In
International Conference on Computer-Aided Design (ICCAD), page 233–239,
2012.

[64] Shiyan Hu, Mahesh Ketkar, and Jiang Hu. Gate Sizing For Cell Library-Based
Designs. In Design Automation Conference (DAC), pages 847–852, June 2007.

[65] Shiyan Hu, Zhuo Li, and Charles J. Alpert. A Faster Approximation Scheme for
Timing Driven Minimum Cost Layer Assignment. In International Symposium
on Physical Design (ISPD), page 167–174, 2009.

[66] Shiyan Hu, Zhuo Li, and Charles J. Alpert. A fully polynomial time approxima-
tion scheme for timing driven minimum cost buffer insertion. In Design Automa-
tion Conference (DAC), pages 424–429, 2009.

[67] Chau-Chin Huang, Yen-Chun Liu, Yu-Sheng Lu, Yun-Chih Kuo, Yao-Wen
Chang, and Sy-Yen Kuo. Timing-driven Cell Placement Optimization for Early
Slack Histogram Compression. In Design Automation Conference (DAC), 2016.

[68] Shih-Hsu Huang, Guan-Yu Jhuo, and Wei-Lun Huang. Minimum buffer in-
sertions for clock period minimization. In International Symposium on Com-
puter, Communication, Control and Automation (3CA), volume 1, pages 426–
429, 2010.

[69] Tsung-Wei Huang, Guannan Guo, Chun-Xun Lin, and Martin D. F. Wong. Open-
Timer v2: A New Parallel Incremental Timing Analysis Engine. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 40(4):776–
789, 2021.

[70] Tsung-Wei Huang, Dian-Lun Lin, Chun-Xun Lin, and Yibo Lin. Taskflow: A
Lightweight Parallel and Heterogeneous Task Graph Computing System. IEEE
Transactions on Parallel and Distributed Systems, 33:1303–1320, 2022.

[71] Tsung-Wei Huang, Yibo Lin, Chun-Xun Lin, Guannan Guo, and Martin D. F.
Wong. Cpp-Taskflow: A General-Purpose Parallel Task Programming System at
Scale. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 40(8):1687–1700, 2021.

141

BIBLIOGRAPHY

[72] Tsung-Wei Huang and Martin D. F. Wong. OpenTimer: A high-performance
timing analysis tool. In International Conference on Computer-Aided Design
(ICCAD), pages 895–902.

[73] Aaron P. Hurst, Philip Chong, and Andreas Kuehlmann. Physical placement
driven by sequential timing analysis. In International Conference on Computer-
Aided Design (ICCAD), pages 379–386, 2004.

[74] Anil K. Jain. Data clustering: 50 years beyond K-means. Pattern Recognition
Letters, 31(8):651 – 666, 2010.

[75] Kwangok Jeong, Andrew B. Kahng, and Hailong Yao. Revisiting the Linear
Programming Framework for Leakage Power vs. Performance Optimization. In
International Symposium on Quality Electronic Design (ISQED), pages 127–134,
2009.

[76] Yanbin Jiang, Sachin S. Sapatnekar, Cyrus S. Bamji, and Juho Kim. Interleaving
buffer insertion and transistor sizing into a single optimization. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, 6(4):625–633, 1998.

[77] Jinwook Jung, Gi-Joon Nam, Lakshmi N. Reddy, Iris Hui-Ru Jiang, and Young-
soo Shin. OWARU: Free Space-Aware Timing-Driven Incremental Placement
With Critical Path Smoothing. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 37(9):1825–1838, Sep. 2018.

[78] Andrew B. Kahng, Seokhyeong Kang, Hyein Lee, Igor L. Markov, and Pankit
Thapar. High-performance Gate Sizing with a Signoff Timer. In International
Conference on Computer-Aided Design (ICCAD), pages 450–457, 2013.

[79] Andrew B. Kahng, Jiajia Li, and Lutong Wang. Improved Flop Tray-based
Design Implementation for Power Reduction. In International Conference on
Computer-Aided Design (ICCAD), pages 1–8, 2016.

[80] Andrew B. Kahng and Qinke Wang. An analytic placer for mixed-size placement
and timing-driven placement. In International Conference on Computer-Aided
Design (ICCAD), pages 565–572, 2004.

[81] Myung-Chul Kim, Jin Hu, Jiajia Li, and Natarajan Viswanathan. ICCAD-2015
CAD contest in incremental timing-driven placement and benchmark suite. In
International Conference on Computer-Aided Design (ICCAD), pages 921–926,
2015.

142

BIBLIOGRAPHY

[82] Seungwon Kim, SangGi Do, and Seokhyeong Kang. Fast Predictive Useful Skew
Methodology for Timing-Driven Placement Optimization. In Design Automation
Conference (DAC), pages 55:1–55:6, 2017.

[83] Ted Kirkpatrick and Norman Ross Clark. Pert as an Aid to Logic Design. IBM
Journal of Research and Development, 10(2):135–141, 1966.

[84] Tim Kong. A novel net weighting algorithm for timing-driven placement. In
International Conference on Computer-Aided Design (ICCAD), pages 172–176,
2002.

[85] Luciano Lavagno, Igor L. Markov, Grant Martin, and Louis K. Scheffer. Elec-
tronic Design Automation for IC Implementation, Circuit Design, and Process
Technology. Taylor and Francis group, 2016.

[86] Taehee Lee, David Z. Pan, and Joon-Sung Yang. Clock Network Optimization
With Multibit Flip-Flop Generation Considering Multicorner Multimode Timing
Constraint. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 37(1):245–256, Jan 2018.

[87] Li Li, Peng Kang, Yinghai Lu, and Hai Zhou. An efficient algorithm for library-
based cell-type selection in high-performance. In International Conference on
Computer-Aided Design (ICCAD), pages 226–232, 2012.

[88] John Lillis, Chung-Kuan Cheng, and Ting-Ting Y. Lin. Optimal wire sizing and
buffer insertion for low power and a generalized delay model. IEEE Journal of
Solid-State Circuits, 31(3):437–447, 1996.

[89] Yibo Lin, Shounak Dhar, Wuxi Li, Haoxing Ren, Brucek Khailany, and David Z.
Pan. DREAMPIace: Deep Learning Toolkit-Enabled GPU Acceleration for Mod-
ern VLSI Placement. In Design Automation Conference (DAC), pages 1–6, 2019.

[90] Yibo Lin, Wuxi Li, Jiaqi Gu, Haoxing Ren, Brucek Khailany, and David Z. Pan.
ABCDPlace: Accelerated Batch-Based Concurrent Detailed Placement on Mul-
tithreaded CPUs and GPUs. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 39(12):5083–5096, 2020.

[91] I-Min Liu, A. Aziz, D.F. Wong, and Hai Zhou. An efficient buffer insertion
algorithm for large networks based on Lagrangian relaxation. In International
Conference on Computer Design: VLSI in Computers and Processors (ICCD),
pages 210–215, 1999.

143

BIBLIOGRAPHY

[92] Yifang Liu and Jiang Hu. A New Algorithm for Simultaneous Gate Sizing and
Threshold Voltage Assignment. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 29(2):223–234, 2010.

[93] Yifang Liu and Jiang Hu. GPU-Based Parallelization for Fast Circuit Op-
timization. ACM Transactions on Design Automation of Electronic Systems,
16(3):24:1–24:14, June 2011.

[94] Yifang Liu, Jiang Hu, and Weiping Shi. Multi-Scenario Buffer Insertion in Multi-
Core Processor Designs. In International Symposium on Physical Design (ISPD),
page 15–22, 2008.

[95] Vinicius Livramento, Derong Liu, Salim Chowdhury, Bei Yu, Xiaoqing Xu,
David Z. Pan, José Luı́s Güntzel, and Luiz C. V dos Santos. Incremental Layer
Assignment Driven by an External Signoff Timing Engine. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 36(7):1126–1139,
2017.

[96] Vinicius Livramento, Renan Netto, Chrystian Guth, José Luı́s Güntzel, and Luiz
C. V. Dos Santos. Clock-Tree-Aware Incremental Timing-Driven Placement.
ACM Transactions on Design Automation of Electronic Systems, 21(3):38:1–
38:27, April 2016.

[97] Vinicius S. Livramento, Chrystian Guth, José Luı́s Güntzel, and Marcelo O. Jo-
hann. A Hybrid Technique for Discrete Gate Sizing Based on Lagrangian Re-
laxation. ACM Transactions on Design Automation of Electronic Systems, 19(4),
August 2014.

[98] Vinicius S. Livramento, Chrystian Guth, José Luı́s Güntzel, and Marcelo O. Jo-
hann. Fast and efficient Lagrangian Relaxation-based Discrete Gate Sizing. In
Design, Automation Test in Europe (DATE), pages 1855–1860, 2013.

[99] Jianchao Lu and Baris Taskin. Post-CTS Clock Skew Scheduling with Limited
Delay Buffering. In International Midwest Symposium on Circuits and Systems
(MWSCAS), pages 224 – 227, 09 2009.

[100] Lee-Chung Lu. Physical Design Challenges and Innovations to Meet Power,
Speed, and Area Scaling Trend. In International Symposium on Physical Design
(ISPD), pages 63–63, 2017.

[101] Yi-Chen Lu, Siddhartha Nath, Vishal Khandelwal, and Sung Kyu Lim. RL-Sizer:
VLSI Gate Sizing for Timing Optimization using Deep Reinforcement Learning.
In Design Automation Conference (DAC), pages 733–738, 2021.

144

BIBLIOGRAPHY

[102] Chiao-Ling Lung, Hai-Chi Hsiao, Zi-Yi Zeng, and Shih-Chieh Chang. LP-based
multi-mode multi-corner clock skew optimization. In International Symposium
on VLSI Design, Automation and Test (VLSI-DAT), pages 335–338, 2010.

[103] Tao Luo, David Newmark, and David Z. Pan. A new LP based incremental
timing driven placement for high performance designs. In Design Automation
Conference (DAC), pages 1115–1120, July 2006.

[104] Nancy D. MacDonald. Timing Closure in Deep Submicron Designs. In Design
Automation Conference (DAC), 2010.

[105] Dimitrios Mangiras, David Chinnery, and Giorgos Dimitrakopoulos. Task-based
Parallel Programming for Gate Sizing. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, pages 1–1, 2022.

[106] Dimitrios Mangiras and Giorgos Dimitrakopoulos. Incremental Lagrangian Re-
laxation based Discrete Gate Sizing and Threshold Voltage Assignment. In Inter-
national Conference on Modern Circuits and Systems Technologies (MOCAST),
pages 1–5, 2021.

[107] Dimitrios Mangiras and Giorgos Dimitrakopoulos. Incremental Lagrangian Re-
laxation Based Discrete Gate Sizing and Threshold Voltage Assignment. Tech-
nologies, 9(4), 2021.

[108] Dimitrios Mangiras, Pavlos Mattheakis, Pierre-Olivier Ribet, and Giorgos Dim-
itrakopoulos. Soft-Clustering Driven Flip-Flop Placement Targeting Clock-
Induced OCV. In International Symposium on Physical Design (ISPD), page
25–32, 2020.

[109] Dimitrios Mangiras, Apostolos Stefanidis, Ioannis Seitanidis, Chrysostomos
Nicopoulos, and Giorgos Dimitrakopoulos. Timing-Driven Placement Optimiza-
tion Facilitated by Timing-Compatibility Flip-Flop Clustering. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 39(10):2835
– 2848, Oct. 2020.

[110] Yehdhih Ould Mohammed Moctar and Philip Brisk. Parallel FPGA routing based
on the operator formulation. In Design Automation Conference (DAC), pages 1–
6, 2014.

[111] Michael D. Moffitt, David A. Papa, Zhuo Li, and Charles J. Alpert. Path Smooth-
ing via Discrete Optimization. In Design Automation Conference (DAC), page
724–727, 2008.

145

BIBLIOGRAPHY

[112] Juan Antonio Montiel-Nelson, Javier Sosa, Héctor Navarro, Roberto Sarmiento,
and Antonio Núñez. Efficient method to obtain the entire active area against
circuit delay time trade-off curve in gate sizing. IEE Proceedings - Circuits,
Devices and Systems, 152:133–145, 2005.

[113] David Nguyen, Abhijit Davare, Michael Orshansky, David Chinnery, Brandon
Thompson, and Kurt Keutzer. Minimization of Dynamic and Static Power
Through Joint Assignment of Threshold Voltages and Sizing Optimization. In In-
ternational Symposium on Low Power Electronics and Design (ISLPED), pages
158–163, 2003.

[114] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A Lightweight Infras-
tructure for Graph Analytics. In Symposium on Operating Systems Principles
(SOSP), pages 456–471, 2013.

[115] Wing Ning. Strongly NP-hard discrete gate-sizing problems. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 13(8):1045–1051,
1994.

[116] Muhammet Mustafa Ozdal, Chirayu Amin, Andrey Ayupov, Steven M. Burns,
Gustavo R. Wilke, and Cheng Zhuo. An Improved Benchmark Suite for the
ISPD-2013 Discrete Cell Sizing Contest. In International Symposium on Physical
Design (ISPD), page 168–170, 2013.

[117] Muhammet Mustafa Ozdal, Steven Burns, and Jiang Hu. Gate sizing and de-
vice technology selection algorithms for high-performance industrial designs. In
International Conference on Computer-Aided Design (ICCAD), pages 724–731,
2011.

[118] Muhammet Mustafa Ozdal, Steven Burns, and Jiang Hu. Algorithms for Gate
Sizing and Device Parameter Selection for High-Performance Designs. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
31(10):1558–1571, October 2012.

[119] Uday Padmanabhan, Janet Meiling Wang, and Jiang Hu. Robust Clock Tree
Routing in the Presence of Process Variations. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 27(8):1385–1397, Aug 2008.

[120] David Papa, Charles Alpert, Cliff Sze, Zhuo Li, Natarajan Viswanathan, Gi-Joon
Nam, and Igor Markov. Physical Synthesis with Clock-Network Optimization
for Large Systems on Chips. IEEE Micro, 31(4):51–62, 2011.

146

BIBLIOGRAPHY

[121] David A. Papa, Tao Luo, Michael D. Moffitt, Cliff C. N. Sze, Zhuo Li, Gi-
Joon Nam, Charles J. Alpert, and Igor L. Markov. RUMBLE: An Incremental
Timing-Driven Physical-Synthesis Optimization Algorithm. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 27(12):2156–
2168, 2008.

[122] Lawrence T. Pillage and Ronald A. Rohrer. Asymptotic waveform evaluation
for timing analysis. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 9(4):352–366, 1990.

[123] Julia Casarin Puget, Guilherme Flach, Marcelo Johann, and Ricardo Reis. Jezz:
An Effective Legalization Algorithm for Minimum Displacement. In Symposium
on Integrated Circuits and Systems Design (SBCCI), pages 1–5, Aug 2015.

[124] Mohammad Rahman, Hiran Tennakoon, and Carl Sechen. Library-Based Cell-
Size Selection Using Extended Logical Effort. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 32(7):1086–1099, 2013.

[125] Karthik Rajagopal, Tal Shaked, Yegna Parasuram, Tung Cao, Amit Chowdhary,
and Bill Halpin. Timing Driven Force Directed Placement with Physical Net
Constraints. In International Symposium on Physical Design (ISPD), page 60–66,
2003.

[126] Anand Rajaram and David Z. Pan. Variation Tolerant Buffered Clock Network
Synthesis with Cross Links. In International Symposium on Physical Design
(ISPD), pages 157–164, 2006.

[127] Anand Rajaram and David Z. Pan. Robust Chip-level Clock Tree Synthesis for
SOC Designs. In Design Automation Conference (DAC), pages 720–723, 2008.

[128] Venky Ramachandran. Construction of minimal functional skew clock trees. In
International Symposium on Physical Design (ISPD), page 119–120, 2012.

[129] Tiago Reimann, Gracieli Posser, Guilherme Flach, Marcelo Johann, and Ricardo
Reis. Simultaneous gate sizing and Vt assignment using Fanin/Fanout ratio and
Simulated Annealing. In International Symposium on Circuits and Systems (IS-
CAS), pages 2549–2552, 2013.

[130] James Reinders. Intel Threading Building Blocks. O’Reilly & Associates, Inc.,
USA, 2007.

147

BIBLIOGRAPHY

[131] Haoxing Ren, David Z. Pan, Charles J. Alpert, Gi-Joon Nam, and Paul Villar-
rubia. Hippocrates: First-Do-No-Harm Detailed Placement. In Asia and South
Pacific Design Automation Conference (ASP-DAC), pages 141–146, 2007.

[132] Haoxing Ren, David Z. Pan, and David S. Kung. Sensitivity Guided Net Weight-
ing for Placement Driven Synthesis. In International Symposium on Physical
Design (ISPD), pages 10–17, 2004.

[133] Bernhard M. Riess and Gisela G. Ettelt. SPEED: fast and efficient timing driven
placement. In International Symposium on Circuits and Systems (ISCAS), vol-
ume 1, pages 377–380, 1995.

[134] Subhendu Roy, Derong Liu, Jagmohan Singh, Junhyung Um, and David Z. Pan.
OSFA: A New Paradigm of Aging Aware Gate-Sizing for Power/Performance
Optimizations Under Multiple Operating Conditions. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 35:1618–1629, Oct
2016.

[135] Subhendu Roy, Derong Liu, Junhyung Um, and David Z. Pan. OSFA: A new
paradigm of gate-sizing for power/performance optimizations under multiple op-
erating conditions. In Design Automation Conference (DAC), pages 1–6, 2015.

[136] Subhendu Roy, Pavlos Mattheakis, Laurent Masse-Navette, and David Z. Pan.
Clock Tree Resynthesis for Multi-Corner Multi-Mode Timing Closure. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
34(4):589–602, 2015.

[137] Richard L. Rudell. Logic Synthesis for VLSI Design. PhD thesis, EECS Depart-
ment, University of California, Berkeley, Apr 1989.

[138] Sachin Sapatnekar, Vasant Rao, Pravin Vaidya, and Sung-Mo Kang. An exact
solution to the transistor sizing problem for CMOS circuits using convex opti-
mization. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 12(11):1621–1634, 1993.

[139] Ioannis Seitanidis, Giorgos Dimitrakopoulos, Pavlos Mattheakis, Laurent Masse-
Navette, and David Chinnery. Timing-Driven and Placement-Aware Multi-Bit
Register Composition. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 38(8):1501–1514, Aug 2019.

[140] Ankur Sharma, David Chinnery, Sarvesh Bhardwaj, and Chris Chu. Fast La-
grangian Relaxation Based Gate Sizing Using Multi-Threading. In International
Conference on Computer-Aided Design (ICCAD), pages 426–433, 2015.

148

BIBLIOGRAPHY

[141] Ankur Sharma, David Chinnery, and Chris Chu. Lagrangian Relaxation Based
Gate Sizing With Clock Skew Scheduling - A Fast and Effective Approach. In
International Symposium on Physical Design (ISPD), pages 129–137, 2019.

[142] Ankur Sharma, David Chinnery, Shrirang Dhamdhere, and Chris Chu. Rapid
gate sizing with fewer iterations of Lagrangian Relaxation. In International Con-
ference on Computer-Aided Design (ICCAD), pages 337–343, 2017.

[143] Ankur Sharma, David Chinnery, Tiago Reimann, Sarvesh Bhardwaj, and Chris
Chu. Fast Lagrangian Relaxation-Based Multithreaded Gate Sizing Using Sim-
ple Timing Calibrations. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 39(7):1456–1469, 2019.

[144] Rupesh S. Shelar. An Efficent Clustering Algorithm for Low Power Clock Tree
Synthesis. In International Symposium on Physical Design (ISPD), pages 181–
188, 2007.

[145] Narendra Shenoy. Retiming: Theory and practice. Integration, 22(1):1–21, 1997.

[146] Gregory Shklover and Ben Emanuel. Simultaneous Clock and Data Gate Siz-
ing Algorithm with Common Global Objective. In International Symposium on
Physical Design (ISPD), pages 145–152, 2012.

[147] Kanwar Jit Singh, Albert R. Wang, Robert K. Brayton, and Alberto L.
Sangiovanni-Vincentelli. Timing optimization of combinational logic. In Inter-
national Conference on Computer-Aided Design (ICCAD), pages 282–285, 1988.

[148] Peter Spindler, Ulf Schlichtmann, and Frank M. Johannes. Abacus: Fast legal-
ization of standard cell circuits with minimal movement. In International Sym-
posium on Physical Design (ISPD), pages 47–53, 2008.

[149] Arvind Srinivasan, Kamal Chaudhary, and Ernest S. Kuh. RITUAL: a perfor-
mance driven placement algorithm for small cell ICs. In International Conference
on Computer-Aided Design (ICCAD), pages 48–51, 1991.

[150] Apostolos Stefanidis, Dimitrios Mangiras, Chrysostomos Nicopoulos, David
Chinnery, and Giorgos Dimitrakopoulos. Design Optimization by Fine-Grained
Interleaving of Local Netlist Transformations in Lagrangian Relaxation. In Inter-
national Symposium on Physical Design (ISPD), pages 87–94, 2020.

[151] Apostolos Stefanidis, Dimitrios Mangiras, Chrysostomos Nicopoulos, David
Chinnery, and Giorgos Dimitrakopoulos. Autonomous Application of Netlist

149

BIBLIOGRAPHY

Transformations inside Lagrangian Relaxation-based Optimization. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
40(8):1672–1686, August 2021.

[152] Hiran Tennakoon and Carl Sechen. Gate sizing using Lagrangian relaxation com-
bined with a fast gradient-based pre-processing step. In International Conference
on Computer-Aided Design (ICCAD), pages 395–402, 2002.

[153] Chung-Wen Albert Tsao and Cheng-Kok Koh. UST/DME: A Clock Tree Router
for General Skew Constraints. In International Conference on Computer Aided
Design (ICCAD), pages 400–405, 2000.

[154] Ren-Song Tsay and Juergen Koehl. An Analytic Net Weighting Approach for
Performance Optimization in Circuit Placement. In Design Automation Confer-
ence (DAC), page 620–625, 1991.

[155] Wen-Pin Tu, Chung-Han Chou, Shih-Hsu Huang, Shih-Chieh Chang, Yow-Tyng
Nieh, and Chien-Yung Chou. Low-power timing closure methodology for ultra-
low voltage designs. In International Conference on Computer-Aided Design
(ICCAD), pages 697–704, 2013.

[156] Necati Uysal and Rickard Ewetz. OCV Guided Clock Tree Topology Recon-
struction. In Asia and South Pacific Design Automation Conference (ASP-DAC),
pages 494–499, 2018.

[157] Lukas P.P.P. van Ginneken. Buffer placement in distributed RC-tree networks
for minimal Elmore delay. In International Symposium on Circuits and Systems
(ISCAS), pages 865–868, 1990.

[158] Natarajan Viswanathan, Gi-Joon Nam, Jarrod A. Roy, Zhuo Li, Charles J. Alpert,
Shyam Ramji, and Chris Chu. ITOP: Integrating Timing Optimization Within
Placement. In International Symposium on Physical Design (ISPD), pages 83–
90, 2010.

[159] Kai Wang and Malgorzata Marek-Sadowska. Potential Slack Budgeting with
Clock Skew Optimization. In International Conference on Computer Design
(ICCD), pages 265– 271, 2004.

[160] Kui Wang, Hao Fang, Hu Xu, and Xu Cheng. A Fast Incremental Clock Skew
Scheduling Algorithm for Slack Optimization. In Asia and South Pacific Design
Automation Conference (ASP-DAC), page 492–497, 2008.

150

BIBLIOGRAPHY

[161] Xinsheng Wang, Wenpan Liu, and Mingyan Yu. A distinctive O(mn) time al-
gorithm for optimal buffer insertions. In International Symposium on Quality
Electronic Design (ISQED), pages 293–297, 2015.

[162] Xinjie Wei, Yici Cai, and Xianlong Hong. Effective Acceleration of Iterative
Slack Distribution Process. In International Symposium on Circuits and Systems
(ISCAS), pages 1077–1080, 2007.

[163] Carl Sechen William Swartz. Timing Driven Placement for Large Standard Cell
Circuits. In Design Automation Conference (DAC), pages 211–215, 1995.

[164] Anthony D. Williams. C++ Concurrency in Action: Practical Multithreading.
Manning Pubs Co Series. Manning, 2012.

[165] Gang Wu and Chris Chu. Two Approaches for Timing-Driven Placement by
Lagrangian Relaxation. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 36(12):2093–2105, Dec 2017.

[166] Gang Wu, Yuehuan Xu, Dean Wu, Manoj Ragupathy, Yu-Yen Mo, and Chris
Chu. Flip-flop clustering by weighted K-means algorithm. In Design Automation
Conference (DAC), pages 1–6, 2016.

[167] Pei-Ci Wu, Martin D. F. Wong, Ivailo Nedelchev, Sarvesh Bhardwaj, and Vidya-
mani Parkhe. On timing closure: Buffer insertion for hold-violation removal. In
Design Automation Conference (DAC), pages 1–6, 2014.

[168] Yue Xu, Yanheng Zhang, and Chris Chu. FastRoute 4.0: Global router with effi-
cient via minimization. In Asia and South Pacific Design Automation Conference
(ASP-DAC), pages 576–581, 2009.

[169] Bin Zhang. Generalized K-Harmonic Means – Boosting in Unsupervised Learn-
ing. Technical report, HPL-2000-137, Hewlett-Packard Labs, 2000.

151

	Acknowledgements
	Introduction
	Physical Synthesis
	Towards timing closure
	Timing optimization during Logic synthesis
	Timing-driven Placement
	Useful clock skew
	Interconnect delay optimization
	Logic Restructuring
	Integrated optimizations

	Thesis Contribution
	Thesis Organization

	Lagrangian-Relaxation based Timing-driven Placement
	Introduction
	Timing Compatibility Flip-Flop Clustering
	Assign a Timing Profile to each Flip-Flop
	Initialize Clusters and Prioritize Flip-Flops
	Flip-Flop Clustering
	Update Cluster Centers and Timing Profiles
	Clustering Behavior

	LR-Based Timing Optimization
	Overall Flow and LR-based Cell Relocation
	Local Cost Function
	Lagrange Multiplier Update
	Timing Recovery with Flip-Flop-to-LCB Re-assignment

	Placement of the Search Window
	Experimental Results
	Comparison with winner of the ICCAD 2015 contest
	Comparison with recent state-of-the-art
	Runtime comparisons

	Conclusions

	Incremental Lagrangian-Relaxation based Discrete Gate Sizing and Threshold Voltage Assignment
	Introduction
	Basics of LR-based gate sizing
	Incremental LR-based gate sizing
	What is the problem?
	What can we do about it?

	Experimental Results
	Quality-of-Results and Runtime comparisons
	Exploring in depth the proposed LM initialization
	Optimization with a restricted number of available gate sizes

	Conclusions

	Task-based Parallel Programming for Gate Sizing
	Introduction
	Related Work
	Generic Gate Sizing Template
	Initial sizing
	Main gate sizing optimization
	Forward Pass
	Backward pass

	Timing and Power Recovery
	Experimental Results
	The characteristics of the tasks graphs
	Comparison with state-of-the-art
	Highlighting the contribution of RTS and FLTU
	The contribution of final timing and power recovery
	Recovery with Composite Tasks

	Conclusions

	Flip-flop Placement Targeting Clock-induced OCV
	Introduction
	Motivation–Problem formulation
	Soft Clustering-based Placement
	Initialize cluster centers
	Compute membership function
	Update cluster center
	Relocate Cells
	Algorithm complexity

	Experimental Results
	Timing comparisons
	Clock-induced OCV redistribution
	Clock tree complexity

	Conclusions

	Conclusions
	Summary
	Future Work

	Bibliography

