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ABSTRACT

Networks-on-FPGA consist of a network of switches con-

nected with point-to-point links and can cover sufficiently

the communication needs of complex systems implemented

on FPGA platforms. The efficient implementation of such

networks requires the appropriate tuning of their compo-

nents to the characteristics of the FPGA’s logic and mem-

ory resources. In this paper, we present a distributed switch

architecture that exploits in the best way the structure of

the FPGA and achieves significant area/delay savings when

compared to baseline switch architectures; more than 50%

increase in operating frequency is achieved for similar area.

The proposed switch operates as an elastic pipeline and can

be spread throughout the FPGA chip irrespective the topol-

ogy of the network and without limiting the placement op-

tions of the corresponding EDA tools.

1. INTRODUCTION

Platform FPGAs integrate an increasing number of compo-

nents including processors, application specific accelerators,

memories and IO controllers [1, 2]. Simple communication

media such as buses or ad-hoc point-to-point connections do

not suffice for keeping the system’s performance to accept-

able levels. The system-wide communication needs to be ef-

ficiently organized both physically, structured wire connec-

tions, and logically, efficient communication protocols, us-

ing a soft on-chip interconnection network [3]. Scalable in-

terconnection networks that use a network of switches con-

nected with point-to-point links can parallelize the commu-

nication between these modules and improve performance

significantly. Such on-chip interconnection networks are al-

ready a mainstream technology for ASICs, while they are

becoming a need and critical in FPGA-based systems [4].

The first on-chip interconnection networks mimicked the

designs that were architected for large, high performance

multiprocessors. However, as interconnects migrate to the

on-chip environment, constraints and tradeoffs shift and they

should be appropriately adapted to the implementation fab-

ric [5, 6, 7]. Similarly, the first Network-on-FPGA mim-

icked generic Network-on-Chip (NoC) designs without con-

sidering the characteristics of the FPGA [8]. ASIC-oriented

NoCs, even if appropriately customized for the on-chip envi-

ronment, still lead to sub-optimal designs when transferred

directly to FPGAs. This deficit is attributed to the inefficient

mapping of the network’s switches and their components to

the configurable logic array of the FPGA [5, 9].

Fig. 1. The baseline organization of a wormhole switch.

The switches are the backbone of the NoC. A baseline

wormhole (WH) switch organization is shown in Fig. 1. Rout-

ing logic unwraps incoming packet headers and determines

their output destination. Such decoding and routing compu-

tation can be prepared in the previous switch and used in the

current one. This optimization is called lookahead routing

(LRC) and allows routing information to be performed in

parallel with the rest of tasks. At the same time, the packet

header competes for the selected output port, since the rest

of input queues may have a request for the same output port

at the same time. If it wins this stage, called switch alloca-

tion (SA), it will traverse the crossbar (ST - switch traver-

sal) at next cycle, and, one cycle later, it will pass the output

link (LT - link traversal) towards the next switch. In WH

switches, the SA stage is constructed using a single arbiter

per output of the switch that decides independently which

input to serve.

Both LRC and SA stages are performed only for the head

flit of each packet. The remaining body and tail flits follow

the same route that has already been reserved by the head

flit. Therefore, in a WH router, if a packet at the head of

a queue blocks, either because it loses access to the output

(SA) or because the downstream buffer is full, all packets

behind it also stall.



The tasks implemented in each switch can be performed

all on the same cycle. This approach reduces the switch la-

tency measured in cycles but increases significantly the logic

and wiring delay inside each switch. For this reason, many

proposals have split the operation of the switch in multiple

pipeline stages [9], as shown in Fig. 1.

1.1. Networks on FPGAs

Based on the implementation constraints set by the FPGA

platform and the application environment, the NoC designer

should determine the radix of the switches, their possible

pipelined organization, and the width of the datapath, as well

as the amount of buffering required to sustain an acceptable

level of performance. A possible mapping of the baseline

switch to the FPGA is shown in Fig. 2. The ST, SA and

LRC stages are mapped to the LUTs and the registers of the

FPGA, while the input buffers can be mapped either to the

LUT-based distributed RAMs or to to the multi-port recon-

figurable SRAM macros [5].
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Fig. 2. Inefficient mapping of the baseline switch.

The buffers of the switch have a capacity much bigger

than LUT-based RAMs but much smaller than the larger

SRAM macros. Therefore, building such buffers on FPGAs

will either over-utilize the available logic-based RAMs and

limit the logic available for other functions, or under-utilize

the scarce SRAM macros. On the contrary, in FPGAs, the

wiring substrate available to the designer is abundant. Most

of the time it is overprovisioned in order to cover sufficiently

the mapping of a wide range of possible circuits. Thus, for

the networks-on-FPGAs the wires can be considered for free

compared to other resources such as logic and memory.

A set of guidelines for the implementation constraints of

networks-on-FPGAs can be summarized as follows:

Guideline 1: Utilize wide datapaths taking full advantage of

the abundant wiring without violating the area constraints.

This approach benefits also packet latency by decreasing its

serialization part. It takes less time to transfer a 1Kbit packet

through 128b wide links relative to a 32b baseline.

Guideline 2: Use the appropriate radix for the switches that

does not limit the maximum clock frequency of the network.

As long as the clock frequency constraint is not violated high

radix switches can be built further reducing network latency.

Guideline 3: Use cautiously the storage resources for buffer-

ing without negatively affecting network throughput.

Guideline 4: Allow any form of flexibility in the implemen-

tation that would not stress too much the mapping, place-

ment, and routing of the corresponding FPGA-CAD tools.

In fact, recently, new optimized switch implementations

have appeared in open literature [5, 9] that try to satisfy most

of the above guidelines.

2. THE PROPOSED APPROACH

In this paper we go one step beyond and redefine the switch.

We propose a fine-grained decomposition of the switch that

allows us to match better its components to the FPGA re-

sources. The basic element of our proposal is a small switch-

ing module, named AC, that handles independently link traver-

sal, arbitration and multiplexing. Packets are buffered, and

routed at the same time they are crossing the links of the

network. The AC module suits perfectly to the logic blocks

of the FPGA, thus optimizing the use of FPGA resources.

Fig. 3 depicts graphically the main target of our proposal.

The switch is decomposed to an equal number of AC basic

blocks. Each block utilizes only the resources of the logic

array (LUTs and registers) leaving any of the scarse RAM

resource free to other modules of the system.
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Fig. 3. The mapping of AC-based switches on an FPGA.

The AC modules operate as global elastic pipeline [10]

and they are physically spread throughout the chip irrespec-

tive the network topology and without putting any constraint

on the placement tools that accompanies the FPGA. In this

way, both the area and the operating frequency of the NoC

is optimized, allowing the AC modules to achieve a plethora

of optimized configurations on an FPGA environment.

Evaluation results demonstrate that the proposed Dis-

tributed Elastic Switch Architecture (DESA) reduces the area



of the switch, while still offering high-speed implementa-

tions. The implementation-related savings achieved by DESA

do not compromise network-level performance. Simulation

results with synthetic traffic patterns prove that DESA can

achieve better or at least the same throughput as the baseline

design, under equal buffering resources, while still offering

more than 50% better clock frequency and less implementa-

tion area. Under minimum buffering for both switches under

comparison DESA improves both latency and throughput.

3. DESA: STEP-BY-STEP CONSTRUCTION

The proposed switch is an elastic pipelined buffered worm-

hole switch, which is constructed as a collection of inde-

pendent switching modules called AC modules. Each AC

module is able to store, arbitrate and forward its incoming

flits. In the following, we will describe in detail the design

of the distributed switch in a step-by-step manner beginning

from the baseline wormhole architecture.

Fig. 4(a) depicts the organization of each output of aWH

switch following the generic organization shown in Fig. 1.

Each output consists of a multiplexer and a register. The data

inputs of the multiplexer are connected to the input buffers

of the switch and the select signals are driven by the arbiter

that resolves contention in the case of many competing re-

quests. The output link connects directly to the input buffer

of the next node.

Data transfer on the link is guided by flow control infor-

mation exchanged by the two switches. When the receiver

can accept a new flit it asserts the ready signal. When the

transmitter has a new flit available it asserts the request (req)

signal. Data is transmitted when they both see req and ready

signals as true. In this case, they independently know the

transfer has occurred, without negotiation or acknowledge-

ment.

If we move the input buffers of each node close to the

output port of the upstream switch, the basic switch orga-

nization is transformed to the one shown in Fig. 4(b). The

register at each output can be merged with the rest of the

buffers and appear as an unified output buffer. Although the

buffers are drawn at the output of each switch, the switch

itself remains an input-buffered switch, since only one flit

can arrive at each output on each cycle. Now, the flow con-

trol signal produced at the output of each switch needs to

travel all the way back to the outputs of the corresponding

upstream nodes. The flow control information of the output

buffer is combined with the local arbitration decisions of the

current switch and it is forked to all upstream switches. In

this way, any upstream node receives its own ready signal

and knows whether the output buffer is full or in the oppo-

site case if it was granted access to the output.

This organization does not add any benefit relative to the

classical input-buffered organization. The benefits of this
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Fig. 4. The step-by-step construction of DESA.

approach start to show up when we retime the buffer slots

of the output buffer along with the flow control informa-

tion inside the crossbar multiplexer1. In this case, shown in

Figure 4(c), the centralized buffer per output has been trans-

formed to an elastic pipeline. Each stage of the pipeline in-

volves arbitration, multiplexing and the corresponding flow

control. Actually, the input buffers of the baseline organiza-

tion shown in Fig. 4(a) have disappeared and all the buffer-

ing of the switch is performed inside the per-output multi-

plexers.

By distributing the buffers in the crossbar, we completely

remove the need for a centralized input-buffer and rely only

on the registers available in each logic block. This feature

simplifies significantly the design of the switches on the

FPGA, since it leaves the scarce memory resources of the

FPGA, either in the form of LUT-based distributed RAM or

in the form of a larger centralized RAM macro, available to

other modules of the system.

1We only use as any many buffers as the nodes of the multiplexer’s tree

and the rest can be discarded.



However, even after the retiming of the buffers, the elas-

tic pipeline is not properly balanced since the first stage

always involves a long link. Due to the elastic nature of

the distributed switch, this limitation can be immediately re-

moved by shifting the output stage of the switch to the mid-

dle between the two nodes (see Fig. 4(d)). The link length

is reduced by half and actually buffering and multiplexing

are performed along the link. Now, each stage of the elas-

tic pipeline starts with an equal-length link and ends with a

2-to-1 multiplexer.

The complete design of an ACmodule is shown in Fig. 5.

The arbiter receives the local requests from the incoming

data flits and using a round-robin policy selects the one that

will be transferred to the output of the ACmodule. When the

next AC module is not available the arbiter does not grant

any inputs. So the arbiters decisions are first masked with

incoming flow control and then are distributed (forked) as

ready signals to all connected upstream nodes.
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Fig. 5. The implementation of the AC module.

The elastic buffer at the output of the AC module re-

places a simple edge-triggered register [11]. When the out-

put of an elastic register chain stalls downstream, the stall

can only propagate back one stage per cycle, since the out-

going ready signals are first registered at the current AC

node [10]. This approach guarantees the maximum scalabil-

ity in terms of clock frequency. Now, the output register of

the AC module needs to hold two words. One for the stalled

output, and one for storing the flit that is in flight until the

stall signal propagates to the upstream AC modules. In this

way, no data is lost due to a downstream stall. Even if deeper

elastic buffers are possible, as we will show in Section 3, our

analysis with the 2-slot configuration gives sufficiently good

resutls.

At this point, the only missing item to implement a switch

is the LRC module. This module is designed in isolation

and placed at the last AC module at every output port of the

switch. Figure 6 shows the placement of the LRC unit in

different implementations of an 8-port switch.

For a radix-2 AC module a single flit spends log
2
N cy-

cles in each switch due to the pipelined nature of DESA.

This latency can be reduced by multiplexing more inputs

per stage, i.e., by increasing the radix of the AC modules, as

shown in Fig. 6. Without altering the basic design of the dis-

tributed switch, the radix of the AC modules can be chosen

arbitrarily. A radix-M AC module consists of an M -input

arbiter and multiplexer and one elastic buffer at each out-

put. Now the stages to pass an N -input switch equals to

L = log
M

N while the total amount of buffering per out-

put is reduced from 2(N − 1) in the baseline radix-2 case to

2M
L+1

−1

M−1
in the radix-M case.
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Fig. 6. The implementation of the output port of an 8-input

switch using AC modules of different radix.

Although using high-radix ACmodules reduces the num-

ber of cycles per switch, the maximum clock frequency of

the network is negatively affected. High-radix AC modules

add more logic per stage, while the wires that connect them

are inevitably longer. In this case, the switching points per

output (AC modules) are less but more concentrated, since

the output links of more nodes are gathered together. In the

rare case of extremely high-radix networks, where the link

delay is the limiting factor, the links can be split by elastic

buffers without altering the functionality of the rest of the

network. The req/ready signals guarantee safe data transfer

through the pipeline.

From the above description, it can be easily verified that

DESA follows well guidelines 2, 3 and 4 imposed by the

structure of modern FPGAs as described in the introduction.

Satisfying guideline 4 is of particular importance since it

provides the maximum freedom to the CAD tools and at the

same time allows the designer to choose the topology that

best fits the application domain. For example, a placement

of an otherwise structured 2D mesh network using radix-2

AC modules is shown in Figure 7. Regarding guideline 1,

it is the easiest to follow. In the next Section we will show

that the delay of each AC stage is only slightly affected by

the increased the data width.

4. EXPERIMENTAL RESULTS

In this section, we compare the proposed designs against

the baseline switch organization shown in Fig 1. For attain-

ing our comparison data, we first generated the equivalent

Verilog descriptions of all designs under comparison. After

extensive simulations that verified the correctness of each

description, each design was synthesized and mapped to a

Virtex 5 FPGA chip. For the synthesis, mapping, and place-

ment & routing of the designs we used the ISE 12.2 toolset



(a) Floorplan with standard

switches.

(b) Floorplan with AC-based

switches.

Fig. 7. The unconstrained placement of an AC-based 2D

mesh network.

of Xilinx. Please note that the reported results involve only

the optimizations performed by the CAD tools alone, with-

out any manual intervention that would further optimize the

circuits under comparison. In this way, the presented results

can be re-produced by the general designer by just following

the same automated design flow.

At first, we compared the implemenation of the baseline

switch and that of DESA in terms of area and delay after

varying the width of the datapath and the number of buffers

in each case. The switches correspond to a 2D mesh, with 5

inputs and 5 output ports that implement dimension-ordered

routing. The latency of the baseline switch is set to a sin-

gle cycle. This configuration offers the least implementation

area for the baseline switch and it allows us to measure the

delay complexity of the operations involved in the operation

of the switch. Also, the input buffers are always mapped to

distributed RAMs for better area efficiency after appropri-

ately constraining the synthesis/mapping tool. For the case

of AC-based switches, we used radix-2 AC modules. The

obtained results are shown in Table 1.

Flit=16bits
Baseline DESA

Area Delay Area Delay

2 buf/input 321 6.7
272 2.7

4 buf/input 343 6.9

Flit=32bits
Baseline DESA

Area Delay Area Delay

2 buf/input 406 8.5
427 2.9

4 buf/input 475 8.8

Table 1. The area in slices and the delay in nanoseconds of

the 5× 5 switches under comparison.

For small datapaths of 16bits, the proposed design re-

quires the least amount of area, while in the case of 32bits it

is in the middle between the area of the baseline design with

2 and 4 buffers per input, respectively. Due to the small

amout of logic in each elastic pipeline stage, the maximum

clock frequency of the AC-based switch is more than 50%

larger than the frequency of the baseline switch. The base-

line switch needs to be pipelined in 2 or 3 stages in order to

achieve the speed of the AC-based design, increasing even

more its already aggravated area. Please notice that if we

pipeline the baseline switch by 3 or more stages, then this

increases the round-trip time between two switches and thus

the minimum amount of buffering required to achieve full

throughput. These extra buffers will severely affect the area

of the baseline switch. In our case, due to the elastic nature

of the switch and the need of only one cycle stall propaga-

tion, round-trip time remains the same irrespective the radix

of the switch and the radix of the AC modules. In addition,

the speed of DESA is only slightly affected by the increased

flit size allowing fast operation even under wide datapaths.

As shown in Fig. 4(d), the critical path of an AC-based

switch starts from the output buffer of an AC module and

ends at the input of another AC module after crossing a

link of arbitrary length. In order to verify how the delay

of AC-based switches scales after increasing the link length,

we performed an additional set of experiments. We imple-

mented the same AC-based switch but we constrained the

floorplanner to place the last (closer to the output) AC mod-

ules far away from the rest, i.e., the ones closer to the inputs.

The delay measurements we obtained for a 16 and 32bit dat-

apath after varying the distance between the AC modules is

shown in Fig. 8. The delay increases almost linearly to the

link’s length and even when the AC modules are placed 70

logic slices apart their delay is still significantly less than the

delay of a single-cycle baseline switch.
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Fig. 8. The delay of AC-based switches after increasing the

distance between the AC modules.

Next, we evaluate the proposed, AC-based switch mi-

croarchitecture, against the baseline switch organization us-

ing a 16 node, 4 × 4 2D mesh network. We evaluate the

proposed architecture using a cycle-accurate interconnec-

tion network simulator. To evaluate the latency-throughput,

the simulator is warmed up under load without taking mea-



(a) Uniform-random traffic

(b) Bit-complement traffic

Fig. 9. Network throughput vs average message latency for

4× 4 mesh network.

surements until steady-state is reached. Synthetic traffic pat-

tern results from uniform random and bit-complement traffic

are presented when injecting 5-flit packets.

The latency(in cycles)-throughput of the single-cycle base-

line switch and the proposed DESA is shown in Fig. 9, as-

suming for both switches an equal number of total buffer-

ing resources. As we can observe, latency and throughput

are almost similar for both switches. The baseline switch

has marginally lower latency (measured in cycles) than the

AC-based switch at low loads. This is due to the 2 cycle la-

tency imposed by the AC-based elastic design. However,

please keep in mind that the clock frequency of the AC-

based design is more than 50% higher compared to the base-

line switch, and, hence, the absolute-time latency of DESA

is always the smallest. Finally, since both design saturate at

the same load and DESA can run at much higher clock fre-

quencies than the baseline switch, even at wide datapaths,

we can clearly identify the significant throughput benefit of

the proposed architecture.

5. CONCLUSIONS

In this paper we have proposed a novel switch design, tai-

lored for FPGAs implementation. By careful design of ev-

ery block, mimicking the resources available in basic FPGA

cells, we are able to optimize the automatic mapping of

networks on FPGAs, avoiding the use of scarce memory

blocks and reducing the effects of long links between net-

work components. The basic AC module, when used to im-

plement a NoC in an FPGA, is able to reduce significantly

the per-switch latency while keeping network throughput

un-affected. Area savings are also noticeable. If the base-

line switch wants to compete in speed with the AC-based

switch design, extra registers and buffering resources will

be needed, that will significantly increase the area needs.

As future work we plan to deeply analyze the effect of

different radix AC designs and how they affect frequency

and performance of the switches. In this context the adop-

tion of the merged arbiter multiplexer approach [12] is ex-

pected to increase significantly the area/delay savings.
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